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1 Introduction

Mounting empirical evidence suggests that government revenues from oil, natural resources, and

other windfall gains increase corruption – see, e.g., Caselli and Michaels (2013), Brollo et al. (2013),

Sala-i-Martin and Subramanian (2013), and Ferraz et al. (2012).1 Moreover, as shown in Desierto

(2018), formal models of the political resource curse posit that resource revenues provide rents

which can be appropriated by corrupt public officials at the expense of public good provision. This

mechanism reveals that corruption and public goods spending are intrinsically related.

Indeed, many papers demonstrate that public good provision can provide opportunities for

corruption. Olken (2006, 2007), Olken and Pande (2012), Renikka and Svensson (2004), and

Niehaus and Sukhtankar (2013) reveal sizeable leakages in the implementation of public programs

and projects. Mauro (1998), Tanzi and Davoodi (1997, 2001), Gupta, Davoodi and Tiongson (2001),

and Gupta, de Melo and Sharan (2001) suggest that corruption is associated with only some types

of government expenditures – spending on military contracts and public works, in particular, are

thought to generate large bribes and kickbacks. Arvate et al. (2010) and Hessami (2014), however,

show that the positive association exists for most types of government expenditures, even across

OECD countries.

If corruption and public spending are indeed related, such association should be more pronounced

when the revenues that fund spending largely come from natural resources and similar windfall

incomes. Yet even a cursory look at cross-country data suggests the opposite. Figure 1 shows that

while, overall, the incidence of bribery increases with military spending, such association is only

apparent for countries with little reliance on oil. In fact, for countries whose oil rents are greater

than 10 percent of GDP, the association disappears.

Empirical and theoretical results on the political resource curse remain incongruous essentially

because the relationship between corruption and public good provision is undertheorized. On the

one hand, canonical models of the rent-seeking political agent – Barro (1973), Ferejohn (1986),

Persson and Tabellini (2000), Bueno de Mesquita et al. (1999, 2003, 2010), which are applied to

resource curse phenomena in Brollo et al. (2013), Abdih et al. (2012), Ahmed (2012), Smith (2008),

and Robinson et al. (2006), show that public good provision is associated with less corruption. In

these models, the agent can either spend government revenues on public goods, which benefit all

citizens, or appropriate it for her own consumption and/or to buy political support. Corruption is

tantamount to theft of government revenues. In this case, the agent is revenue-seeking. When the

agent is revenue-seeking, public spending and corruption necessarily move in opposite directions,

as more spending simply leaves less revenues for the agents’ private use/consumption.

1See also Tyburski (2014), Berdiev et al. (2013), Abdih et al. (2012), Ahmed (2012), Arezki and Bruckner (2011),
Vicente (2010), Leite and Weidmann (1999), La Porta et al. (1999) For a survey, see Ross (2015).
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On the other hand, the agent might want to increase spending in order to obtain rents — that

is, she could be expenditure-seeking. This type of rent-seeking is captured in the common agency

models of bribery, pioneered by Bernheim and Whinston (1986a, 1986b), Dixit, Grossman, and

Helpman (1997), and Grossman and Helpman (1994, 2001), in which principals from the private

sector offer bribes to their common political agent in exchange for their preferred policy, e.g. higher

public-good spending.

What is required is a model that allows for agents to be both revenue and expenditure-seeking.

I provide what is—to the best of my knowledge—the first such model. The theoretical framework

I propose not only generates novel insights into the relationship between public goods spending

and corruption but, in so doing, also clarifies the conditions under which a political resource curse

occurs.

I build on the work of Grossman and Helpman (2001) who apply the common agency model

with complete information to the problem of the optimal allocation of government revenues between

two sets of principals, one of which offers a menu of contributions or bribes in order to influence

the agent to spend relatively more revenues towards that principal. Grossman and Helpman (2001)

assume, however, that the agent spends all of the revenues and, thus, obtains rents only by receiving

bribes. Since the bribes are given in exchange for spending, and more spending also increases the

principals’ utility, an increase in government revenues always induces higher total spending.

In my model, I allow for the possibility that the agent steals the revenues. In this case, the

effect of increased revenues on spending is not obvious. The agent might spend all of the addi-

tional revenues in exchange for more bribes, but she might also want to keep them for herself.

By incorporating theft into the model, I show that there is a threshold level of spending that the

agent maintains. If revenues are at or below this threshold, the agent spends all of the revenues

and, therefore, obtains rents only from bribes. In this case, increasing revenues up to the threshold

unambiguously increases public spending. When revenues are larger than the threshold spending,

the agent maintains the latter and steals all the extra revenues above the threshold. In equilibrium,

any increase in revenues beyond the threshold has no effect on public spending, nor on bribes.

The intuition is that the bribing principal can obtain a higher share in the revenues only if those

revenues are spent in the first place. Thus, unless the agent willingly spends the revenues, the bribe

has to be sufficiently high so as to induce the agent to spend the revenues and to allocate more of

it towards the bribing principal. However, the latter would not be willing to pay this much since

inducing the agent to spend benefits all principals. In equilibrium, the amount of the bribe cannot

prevent the theft of revenues – it can only pay for a higher share of the revenues that the agent

is willing to spend. At some point, the agent will not want to keep increasing spending precisely

because she can steal the revenues instead. The agent only needs to meet, at most, a threshold level
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Figure 1: Does Corruption Increase with Military Spending?
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Bribery incidence and military spending

(a) All available World Bank country-level data between 1997-2012
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Bribery and Military Spending in Non-oil Rich Countries

(b) Countries with oil rents less than 10% of
GDP
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(c) Countries with oil rents greater than 10%
of GDP

This figure shows binned scatterplots of military spending and the incidence of bribery. Data used are from a pooled cross-section of
countries for which some World Development Indicators are available between years 1997 to 2012 — specifically: bribery, which is the
percentage of firms experiencing at least one bribe payment request; military, which is military expenditure as a percentage of GDP;
and oil, which is oil rents as a percentage of GDP. Graph (a) uses all available data, while graphs (b) and (c) use subsets of the data for
which oil rents are, respectively, less than and greater than 10% of GDP

of public spending, that is, without suffering the consequence of being removed from office. This is

because the agent can use her rents from bribes and stolen revenues to gain political advantage by,

say, swaying electoral outcomes.

The model thus has important implications for the political resource curse. Government revenues

increase corruption at the expense of public good spending when the revenues are larger than some

threshold. This suggests that countries that are heavily reliant on resource revenues are more likely

to exceed the threshold, which enables corrupt politicians to engage in revenue-seeking, rather than

expenditure-seeking, behavior. The reverse holds for countries that are less dependent on windfall
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incomes. This would explain the seemingly paradoxical pattern shown in Figure 1. The lack of

association between bribery and spending in oil-rent rich economies need not imply that there is no

corruption, but that the rent-seeking is in the form of theft, rather than bribery.

While existing datasets on corruption do not distinguish between theft and bribery, some anec-

dotal evidence may render initial support to the model’s findings. Note, in particular, two of the

biggest corruption scandals to date. In 2015, former Prime Minister Najib Razak was accused of

stealing $ 700 million from the government development company 1MDB. In 2014, public officials

at Brazilian oil company Petrobras corporation were alleged to have taken $ 350 million in bribes in

exchange for awarding contracts to construction company Odebrecht. Both 1MDB and Petrobras

are funded by oil revenues, but why did corruption occur in the form of theft in Malaysia and of

bribery in Brazil? For Malaysia to have exceeded the threshold level of revenues that triggers theft,

it must be that Malaysia’s economy is more dependent on resource revenues than Brazil’s. Indeed,

Malaysia’s average income from natural resources over the period 1970-2016 is 17.64% of GDP,

while Brazil’s is only 2.64%.2

The structure of the remainder of the paper is as follows. The next section formally derives

results, analyzes the implications on social welfare, and interprets the political resource curse in

the light of the results. In Section 3, I explicitly show that the revenue– and expenditure-seeking

behavior of the agent occurs even when she can be made accountable to her principals through

elections — such political accountability is imperfect because the rents from office can be used to

influence electoral outcomes. Section 4 concludes with a summary of the contributions of the model.

2 The Model

The following game is by Grossman and Helpman (2001). Let T be government revenues that are to

be spent on principal 1 and principal 2 by their common agent – a public official that has discretion

over the use of T . Denote g1 as the public good spending that the agent allocates to principal 1 and

g2 to principal 2. Principal 1 derives gross benefit V (g1), while principal 2 derives benefit V (g2),

with V ′(·) > 0, V ′′(·) < 0. Principal 1 offers the agent bribe b in exchange for g1. Its net benefit

from public spending is thus V (g1) − b. The agent then chooses an allocation (g1, g2). It values

rents, but also cares about social welfare.

In Grossman and Helpman, the only source of rents for the agent is the bribe payment. In

contrast, I consider the possibility that the agent can also steal government revenues. Thus, let

total rents R include both bribes and unspent revenues (which the government steals), i.e. R =

2See theglobaleconomy.com. The 1MDB company was originally the Terangganu Investment Authority (TIA),
which was funded by royalties and additional guarantees by the government based on future oil revenues. (See
https://en.wikipedia.org/wiki/1Malaysia Development Berhad.)

4



T − g1− g2 + b. The agent’s utility is thus given by U = λ[V (g1) +V (g2)] + (1−λ)(T − g1− g2 + b),

where λ ∈ (0, 1) is the weight it attaches to social welfare which, for now, is taken as given. Section

3 endogenizes it.

As standard in common agency models with complete information, the equilibrium spending

allocation and bribe payment are jointly efficient for the agent and the principal who offers the

bribe. That is, it is obtained by solving

max
g1,g2,b

V (g1)− b

s.t. λ[V (g1) + V (g2)] + (1− λ)(T − g1 − g2 + b) ≥ U (a)

g1 + g2 − T ≤ 0 (b),

(1)

where U is the agent’s reservation utility - what it would obtain if it rejects principal 1’s offer.

Constraint (a) requires that the agent’s utility when it accepts the bribe is at least as large as when

it rejects it. The possibility of theft is captured by constraint (b) - if it is binding, i.e. g1 + g2 = T ,

then all revenues are spent and theft is not possible. If it is slack, then theft occurs, with the

amount of stolen revenues equal to T − g1− g2. I thus call constraint (b) the “no-theft constraint”.

I first analyze the equilibrium in which the no-theft constraint binds and, thus, only bribery is

the source of the agent’s rents. I restrict the discussion to interior solutions.

2.1 Bribery

If the no-theft constraint binds, then g2 = T − g1 and problem (1) becomes3

max
g1,b

V (g1)− b

s.t. λ[V (g1) + V (T − g1)] + (1− λ)(b) ≥ U
(2)

In equilibrium, the above constraint binds with equality, which allows one to obtain the following

expression for b:

b =
( 1

1− λ
)[
U − λ[V (g1) + V (T − g1)]

]
, (3)

which, when plugged into the maximand in (2), transforms (2) into the following unconstrained

problem:

max
g1

V (g1)−
( 1

1− λ
)[
U − λ[V (g1) + V (T − g1)]

]
. (4)

Equilibrium g∗1 thus satisfies the first-order condition (FOC) F = V ′(g∗1) + λ
1−λV

′(g∗1)− λ
1−λV

′(T −
g∗1) = 0, or

V ′(g∗1) = λV ′(T − g∗1). (5)

3This is the exact same problem in Grossman and Helpman (2001).
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That is, the equilibrium allocation attaches more weight to the marginal benefit from spending of

the principal that offers a bribe, implying that g∗1 > g∗2 = T − g∗1.

What are the effects of government revenues on public spending and corruption (in the form of

bribe-rents)? First, Proposition 1 establishes that revenues increase both g∗1 and g∗2 = T − g∗1 and,

thus, total public spending. However, the increase in g∗1 may be smaller or larger than the increase

in g∗2. In particular, if the ratio of the rates of decrease of the marginal utilities from g∗1 and from

g∗2 is larger (smaller) than the weight λ that the agent attaches to social welfare, then an increase

in revenues induces a smaller (larger) increase in g∗1 relative to g∗2. That is:

Proposition 1. Let x =
V ′′(g∗1)

V ′′(T−g∗1)
. Then:

(a) if λ > x, then =
dg∗1
dT

>
dg∗2
dT

> 0.

(n) if λ < x, then =
dg∗2
dT

>
dg∗1
dT

> 0.

(a) if λ = x, then =
dg∗2
dT

=
dg∗1
dT

> 0.

(All proofs are in appendix D.)

Next, to show the effect of revenues on bribe-rents, I conduct comparative statics on the equi-

librium amount of bribes. The bribe equation (3) requires an expression for U — which is the

utility that the agent would obtain if she rejected principal 1’s bribe offer. In this case, the agent’s

utility would be given by λ[V (g1)+V (T −g1)], which she could maximize by choosing the first-best,

socially optimal level of spending, i.e. g0
1. To see this, note that maximizing λ[V (g1) + V (T − g1)]

yields FOC V ′(g0
1) = V ′(T − g0

1), which implies an equal allocation of T between sectors, that is,

g0
1 = (T−g0

1) = T
2
. Thus, if the agent rejects the bribe offer, she gets U = λ[V (T

2
)+V (T

2
)] = 2λV (T

2
)

which, when plugged into equation (3) gives the equilibrium amount of bribes:

b∗ =
λ

1− λ
[
2V (

T

2
)− V (g∗1)− V (T − g∗1)

]
. (6)

Thus, in equilibrium, the bribe compensates the agent for a fraction λ
1−λ of the loss in social welfare.

Differentiating (6) with respect to T reveals that government revenues have an ambiguous effect

on bribe-rents. Specifically:

Proposition 2. Government revenues may increase or decrease corruption. Specifically, let y =
V ′(T

2
)−V ′(T−g∗1)

V ′(g∗1)−V ′(T−g∗1)
. Then:

(a) if
dg∗1
dT

< y, then = ∂b∗

∂T
> 0

(b) if
dg∗1
dT

> y, then = ∂b∗

∂T
< 0.

(c) if
dg∗1
dT

= y, then = ∂b∗

∂T
= 0.
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That is, if revenues increase, principal 1 will want to increase (decrease) the amount of the bribe

if the agent will want to allocate the additional revenues towards principal 1 at a rate that is below

(above) some threshold y. In turn, this threshold captures the marginal value of the spending on

principal 1, relative to the spending on principal 2 (see the denominator of y). Note that when the

former is much larger than the latter, the threshold is smaller, which makes a decrease in corruption

(case (b)) more likely.

In an equilibrium in which the no-theft constraint binds, government revenues do not generate a

political resource curse. Revenues decrease corruption if the marginal value of the public spending

from which bribes are extracted is sufficiently high. Yet, even when this marginal value is low

and corruption increases, total public good spending unambiguously increases at the rate at which

revenues increase.

The following examples use various functional forms for the principals’ utility from public spend-

ing.

Running Example 1. Suppose V (gi) = ln gi. Then g∗1 = T
1+λ

, g∗2 = λT
1+λ

, and
dg∗1
dT

= 1
1+λ

>
λ

1+λ
=

dg∗2
dT

. Condition (a) of Proposition 1 is satisfied for all λ ∈ (0, 1), since x in this case is equal

to λ2. It can also be shown that b∗ = λ
1−λ [2 ln(T

2
)− ln( T

1+λ
)− ln( λT

1+λ
)] and, thus, ∂b∗

∂T
= 0. Condition

(c) of Proposition 2 is satisfied for all λ ∈ (0, 1), since y in this case is equal to 1
1+λ

.

Running Example 2. Suppose V (gi) =
√
gi. Then g∗1 = T

1+λ2 , g∗2 = λ2T
1+λ2 , and

dg∗1
dT

= 1
1+λ2 >

λ2

1+λ2 =
dg∗2
dT

. Condition (a) of Proposition 1 is satisfied for all λ ∈ (0, 1), since x in this case is equal

to λ3. As for the equilibrium bribes, it can be shown that b∗ = λ
1−λ [2

√
T
2
−
√

T
1+λ2 −

√
λ2T

1+λ2 ], and

that ∂b∗

∂T
= λ

1−λ [ 1√
2T
− (1+λ)

2
√

(1+λ2)+T
]. Thus, it is now the case that ∂b∗

∂T
< 0, since 1√

2T
< (1+λ)

2
√

(1+λ2)+T

or, simplifying, λ < 1. Condition (b) of Proposition 2 is satisfied for all λ ∈ (0, 1), since in this

case,
dg∗1
dT

= 1
1+λ2 > (1−λ)

√
2√

1+λ2 − 1
λ
− 1 = y. To see this, one can simplify the latter inequality to

1
λ
> (
√

2(1 + λ2)− λ)(1− λ) and note that the LHS is greater than 1, while the RHS is less than

1 for all λ ∈ (0, 1).

Running Example 3. Suppose V (gi) = − 1
gi

. Then g∗1 = T
1+
√
λ
, g∗2 =

√
λT

1+
√
λ
, and

dg∗1
dT

= 1
1+
√
λ
>

√
λ

1+
√
λ

=
dg∗2
dT

. Condition (a) of Proposition 1 is satisfied for all λ ∈ (0, 1), since x in this case is

equal to λ
√
λ. Equilibrium bribe is b∗ = (1+λ)

√
λ−2λ

(1−λ)T
. Thus, in this case, ∂b∗

∂T
= 2λ−(1+λ)

√
λ

(1−λ)T 2 > 0, since

2λ > (1 + λ)
√
λ for all λ ∈ (0, 1).4 Condition (a) of Proposition 2 is satisfied since

dg∗1
dT

= 1
1+
√
λ
<

4λ−(1+
√
λ)2

(λ−1)(1+
√
λ)2 = y, which simplifies to 2λ > (1 + λ)

√
λ.

4To see this, note that 2 > 1 + λ) and λ >
√
λ.
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2.2 Bribery and Theft

I now consider the case when the no-theft constraint is non-binding/slack, which implies that theft

is now also possible. Again, I restrict the analysis to interior solutions. Recall problem (1), in which

g2 6= T − g1:
max
g1,g2,b

V (g1)− b

s.t. λ[V (g1) + V (g2)] + (1− λ)(T − g1 − g2 + b) ≥ U (a)

g1 + g2 − T ≤ 0 (b),

(7)

and where (b) is the no-theft constraint. With constraint (a) holding with equality in equilibrium,

the problem can be simplified into

max
g1,g2

V (g1)− 1

1− λ
[U − λ[V (g1) + V (g2)]] + T − g1 − g2

s.t. g1 + g2 − T ≤ 0
(8)

To obtain the equilibrium allocation and total rents when both bribery and theft can occur, one

needs to solve (8) for the case when the no-theft constraint is slack. In this case, the necessary

conditions for optimal g∗1, g
∗
2, γ

∗ are given by the following Kuhn-Tucker conditions:

V ′(g∗1) +
λ

1− λ
V ′(g∗1)− 1− γ∗ = 0 (9)

λ

1− λ
V ′(g∗2)− 1− γ∗ = 0 (10)

γ∗(g∗1 + g∗2 − T ) = 0, (11)

where γ is the Lagrange multiplier — the ‘shadow price’ of preventing theft.

The following results show that not all revenues are stolen, and that some amount of spending

is allocated to both principals. However, beyond this minimum spending, additional revenues have

no effect on spending since they are all stolen. Finally, I compare the effect of revenues on rents

when the only source is bribery with the effect when both theft and bribery can occur. I find an

ambiguous effect — an increase in revenues may induce lower or higher rents from the former than

from the latter.

To proceed, Proposition 3 first establishes that there is some minimum amount of revenues that

are not stolen but are instead spent on both principals 1 and 2.

Proposition 3. Even if theft occurs in equilibrium, some public spending are still allocated, i.e.

g∗1, g
∗
2 > 0.

This implies that at and below this threshold level of revenues, the no-theft constraint binds, in

which case bribes, as the only source of rents, can increase or decrease with revenues, as shown in

Section 2.
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To be able to conduct comparative statics on bribes, total rents, and public spending at revenues

above the threshold level, I first solve for equilibrium bribe b∗ when the no-theft constraint is non-

binding. Constraint (a) in (7) implies that b∗ = 1
1−λ [U − λ[V (g∗1) + V (g∗2)]] + T − g∗1 − g∗2. To get

the agent’s reservation utility U , note that if the agent rejects the bribe offer, she will obtain utility

from social welfare and stolen revenues, which she can maximize by choosing g0
1, g

0
2 via the following

optimization problem:

max
g1,g2

λ[V (g1) + V (g2)]] + (1− λ)(T − g1 − g2)

s.t. g1 + g2 − T ≤ 0
(12)

Necessary for g0
1, g

0
2, γ

0 are the following Kuhn-Tucker conditions:

λV ′(g0
1)− (1− λ)− γ0 = 0 (13)

λV ′(g0
2)− (1− λ)− γ0 = 0 (14)

γ0(g0
1 + g0

2 − T ) = 0 (15)

A result similar to Proposition 3 establishes that g0
1, g

0
2 > 0 (see appendix D). Thus, if the agent

rejects the bribe offer, she obtains utility U = λ[V (g0
1) + V (g0

2)] + (1− λ)(T − g0
1 − g0

2) which, when

plugged into the expression for b∗, gives the equilibrium amount of bribes at revenue levels above

the threshold:

b∗ =
λ

1− λ
[V (g0

1) + V (g0
2)− V (g∗1)− V (g∗2)]− (g0

1 + g0
2 − g∗1 − g∗2). (16)

The following comparative static results demonstrate that revenues above the threshold have no

effect on spending, nor on bribes.

Proposition 4. Government revenues have no effect on g∗1 or g∗2, i.e.
dg∗1
dT
,
dg∗2
dT

= 0.

Lemma 1. Government revenues have no effect on g0
1 or g0

2, i.e.
dg0

1

dT
= 0 and

dg0
2

dT
= 0.

Proposition 5. Government revenues have no effect on the equilibrium bribe, i.e. ∂b∗

∂T
= 0.

The following examples revisit the various functional forms for principals’ utility in section 2.

Running Example 1. When the no-theft constraint is non-binding, γ∗ = 0 and, thus, from

equation (9), g∗1 = 1
1−λ , and from equation (10), g∗2 = λ

1−λ . Thus,
dg∗1
dT

=
dg∗2
dT

= 0, which is consistent

with Proposition 4. It can also be shown that b∗ = λ
1−λ [ln( λ

1−λ) − ln( 1
1−λ)] + 1 and, thus, ∂b∗

∂T
= 0,

which is consistent with Proposition 5.
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Running Example 2. In this case, g∗1 = 1
4(1−λ)2 , g∗2 = λ2

4(1−λ)2 , and
dg∗1
dT

=
dg∗2
dT

= 0, which is

consistent with Proposition 4. Equilibrium bribe is b∗ = λ
1−λ [ 1

λ−1
− 1+λ

2(1−λ)
] − 1

2(λ−1)2 + 1+λ2

4(1−λ)2 and,

thus, ∂b∗

∂T
= 0, which is consistent with Proposition 5.

Running Example 3. In this case, g∗1 = 1√
1−λ , g∗2 =

√
λ√

1−λ , and
dg∗1
dT

=
dg∗2
dT

= 0, which is

consistent with Proposition 4. Equilibrium bribe is b∗ = λ
1−λ [
√

1− λ −
√

1−λ√
λ

] + 1−
√
λ√

1−λ and, thus,
∂b∗

∂T
= 0, which is consistent with Proposition 5.

Note that if public spending does not change, then additional government revenues above the

threshold level are all stolen, implying that theft increases at a rate of 1. Furthermore, because the

amount of bribes is also fixed, total rents grow at the rate of growth of theft. That is, above the

threshold level of revenues:

Corollary 1. Any additional government revenues are stolen, and ∂R∗

∂T
= 1.

Finally, what are the relative magnitudes of the effect of government revenues on corruption

above and below the threshold? It turns out that revenues that are above the threshold need not

always generate rents at a higher rate than revenues below the threshold do. If the marginal value

of the public spending from which bribes are extracted is sufficiently low, then, at revenues below

the threshold, not only do bribes increase with revenues — recall Proposition 2, but the rate of

increase can be higher than the rate at which total rents increase above the threshold, i.e. when

both theft and bribes are the source of rents. That is, case (a) in Proposition 6 below is more likely

to hold.

Proposition 6. Denote total corruption when theft does not occur as R 6T and R∗ when theft occurs,

in equilibrium, and re-label equilibrium g∗1 and g∗2 obtained in the case of no theft as g 6T1 and g 6T2 . Let

z =
V ′(T

2
)−V ′(T−g 6T1 )−( 1−λ

λ
)

V ′(g 6T1 )−V ′(T−g 6T1 )
. Then:

(a) if
dg 6T1
dT

< z, then ∂R 6T

∂T
> ∂R∗

∂T
;

(b) if
dg 6T1
dT

> z, then ∂R 6T

∂T
< ∂R∗

∂T
;

(c) if
dg 6T1
dT

= z, then ∂R 6T

∂T
= ∂R∗

∂T
.

The following demonstrate cases (a), (b), and (c) using the same functional forms in previous

examples.

Running Example 1. Recall from Section 2 that ∂b∗

∂T
= ∂R 6T

∂T
= 0 when V (gi) = ln gi, and is

thus less than ∂R∗

∂T
= 1. This is consistent with condition (b) of Proposition 6, since in this case,

z = 1
1+λ

+ T
λ−1

, which is less than
dg 6T1
dT

= 1
1+λ

.
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Running Example 2. Recall from Section 2 that ∂b∗

∂T
< 0. Thus, ∂R 6T

∂T
< ∂R∗

∂T
. This is consistent

with condition (b) of Proposition 6 - note that
dg 6T1
dT

= 1
1+λ2 >

λ
√

2−
√
λ2+1−2

√
T (1−λ)√

λ2+1(λ−1)
= z. To see this,

note that the inequality can be reduced to 2T (1+λ2)+
√
λ2+1

1+λ2 > λ
√

2−
√
λ2+1

λ−1
, and it can be shown that

the LHS of this inequality is greater than 1, while the RHS is less than 1.

Running Example 3. Recall from Section 2 that ∂b∗

∂T
= 2λ−(λ+1)

√
λ

(1−λ)T 2 > 0. Note that 2λ−(λ+1)
√
λ

(1−λ)T 2 <

1 if, simplifying, λ < T 2+
√
λ

T 2+2−
√
λ

= λ. Thus, ∂R 6T

∂T
< ∂R∗

∂T
if λ < λ, while ∂R 6T

∂T
≥ ∂R∗

∂T
if λ ≥ λ. These

are consistent with the conditions of Proposition 6 - for instance, one can set
dg 6T1
dT

= 1
1+
√
λ
>

4λ−(1+
√
λ

2−T 2(1−λ)

(1+
√
λ)2(λ−1)

= z to capture condition (b), which precisely reduces to λ < T 2+
√
λ

T 2+2−
√
λ

= λ. Con-

ditions (a) and (c) easily follow.

Summarizing these results, Figure 2 depicts the effect of government revenues on public-good

spending and corruption. Propositions 3 and 4 imply that there is a threshold amount of revenues

T at which total spending is positive, but beyond which spending does not increase further. Below

the threshold, the no-theft constraint binds and, thus, all revenues are spent. Total public-good

spending S = g1 + g2 thus has slope equal to 1 below T and 0 thereafter. When the no-theft

constraint binds, Proposition 2 shows that bribes may increase or decrease. Consider, then, bribe

curves b1 and b2 which show different possibilities below T but which, beyond T , have slope 0 as

implied by Proposition 5. Lastly, total rents below T come solely from bribes, in which case R1 and

R2 coincide with b1 and b2, respectively. Above T , rents come from both bribes and theft, with the

amount of bribes fixed at b1 and b2, and all additional revenues are stolen. Thus, above T , R1 and

R2 have as their y-intercepts their respective intersections with b1 and b2, and slope equal to 1.

2.3 Social Welfare Loss from Theft and Bribery

The two sources of corruption in the model — bribery and theft, produce two kinds of social welfare

losses. Bribery induces an inter-sectoral misallocation of total revenues since it buys the bribing

principal a higher share in total revenues. Meanwhile, theft is an underspending of revenues.

In an equilibrium in which the no-theft constraint binds, the only source of corruption is bribery,

which implies that the only type of social inefficiency is the misallocation of revenues between the

principals/sectors. In contrast, in an equilibrium in which the no-theft constraint is slack, both

bribery and theft occur, but where bribery is limited to some threshold, above which all additional

rents come from theft. Thus, in this case, there are welfare losses both from the misallocation and

underspending of revenues.

One could also compare the losses from such equilibria to the off-equilibrium cases in which the

11



Figure 2: Effect of Revenues on Public Spending and Corruption
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This figure depicts the effect of revenues on public spending and corruption. There is a threshold level of revenues
T below which theft is not possible, in which case all revenues are spent and the only source of rents are bribes
which may increase or decrease with revenues. Above T , all additional revenues are stolen, public spending remains
constant, and total rents come from a fixed amount of bribes and stolen revenues that are increasing at the same
rate as revenues.

agent rejects the bribe, in which case no bribery occurs. The following four cases thus exhaust the

different scenarios:

Case 1: Only Bribery, No Theft

When theft is not possible, but the government accepts bribes, there is no underspending of revenues,

but a misallocation thereof, in which the principal/sector that bribes receives a higher share. Recall

(from equation (5)) that the equilibrium allocation is given by the FOC: V ′(g∗1) = λV ′(T − g∗1),

where λ < 1, which implies that g∗1 > g∗2 = T − g∗1. Thus, even though principals derive the

same marginal utility from public spending, principal 1 obtains a larger share. Note, however, that

because λ > 0, the condition is not V ′(g∗1) = 0, which implies g∗1 < T . Otherwise, if λ were zero,

problem (2) would yield FOC V ′(g∗1) = 0, which implies g1 = T . Because the government also cares

about social welfare, some spending also has to be allocated to the non-bribing sector. Thus, the

bribe compensates the government for the loss in social welfare from ‘over-allocating’ to the bribing

sector. In effect, the inefficiency in intersectional allocation is mitigated because λ > 0.

Case 2: No Bribery, No Theft

If the government were to reject the bribe offer, recall that it would get its reservation utility

λ[V (g1) + V (T − g1)] (in which bribes are zero). It would then choose spending to maximize this

utility, which would yield FOC V ′(g0
1) = V ′(T − g0

1), implying that g0
1 = g0

2 = T − g0
1 = T

2
. That

is, the agent would allocate revenues exactly according to the principals’ marginal utilities from

12



spending. Thus, if there were no corruption - no theft or bribery, inter-sectoral allocation is socially

efficient. There is also no welfare loss from underspending, since g0
1 + g0

2 = T .

Case 3: Bribery and Theft

If theft were now possible, and the government also accepts bribes, then the Kuhn-Tucker conditions

given by equations (9) to (11) imply that the allocation is such that V ′(g∗1) = λV ′(g∗2), where

g∗1 + g∗2 < T . Again, there is intersectoral misallocation because λ < 1, but it is mitigated because

λ is not equal to zero. In addition, there is also underspending of total revenues since g∗1 + g∗2 < T .

Case 4: No Bribery, Only Theft

If the government were to reject the bribes when theft is possible, its reservation utility includes

the rents she would derive from stolen revenues. In this case, the Kuhn-Tucker conditions given

by equations (13) to (15) imply that the the government would choose an allocation such that

V ′(g0
1) = V ′(g0

2), where g0
1 + g0

2 < T . Inter-sectoral allocation is now socially efficient, but there is

underspending of revenues.

Case 1 shows that the equilibrium when the no-theft constraint is binding generates welfare loss

only from the misallocation of revenues, while case 3 shows that the equilibrium when the no-theft

constraint is slack produces losses from both the misallocation and underspending of revenues. Since

the no-theft constraint is slack when actual revenues are above some threshold, one may be tempted

to infer that higher revenues always generate higher losses (as there would be two sources of welfare

losses once revenues are above the threshold). However, this is not the case. I show in appendix A

that the amount of bribes when revenues are below the threshold may be sufficiently large, and the

bribes when revenues are above the threshold sufficiently small, such that the welfare-loss differential

from bribes may be greater than the differential from theft. As a result, the social welfare loss (from

bribes) at revenues below the threshold may be larger than the losses (from bribes and theft) at

revenues above the threshold. Thus, it is not always true that losses are larger at higher levels of

revenues.5

Why is it that only cases 1 and 3 can be supported in any equilibrium of the model? If we allow

for the possibility of bribery, the bribing principal can now match the agent’s reservation utility —

what she would get if she rejected the bribe. That is, if the principal and agent can freely negotiate

the amount of bribes, there is an amount that can induce the agent to accept the bribe. Thus, cases

2 and 4 in which bribes are rejected are off any equilibrium path. Note, however, that the extent to

which the bribe can match the agent’s reservation utility is limited. When revenues increase beyond

some threshold, all additional rents now come from theft. This is because if the option to steal

revenues now becomes viable, any additional bribe would not only have to compensate the agent for

5Thus, notice from Figure 2 that there is a region below T (i.e. from the point of intersection between b1 and b2
until T ) in which bribes b1 are larger than total rents from theft and bribes R2 in a region above T (i.e. from T until
the intersection of b1 and R2).
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the loss in social welfare from the misallocation of revenues, but would also need to compensate the

agent for foregoing the theft of revenues. This means that beyond the threshold, the (principal’s)

marginal cost of preventing theft is larger than the (agent’s) marginal utility from theft. Thus, all

revenues beyond the threshold are stolen.

While the existence of such a threshold is implied by the results, the value of the threshold

cannot be determined in the model. One can solve for the equilibrium when the no-theft constraint

binds, and when it is slack, but there is nothing that determines ex ante whether the constraint is

binding or slack. One could indeed solve for g1, g2 when the constraint is binding, and let its sum

g1 + g2 = T be the threshold amount of revenues above which theft is possible. That is, there is

some minimum demand for spending that has to be met, and only when it is met can the agent

steal the ‘extra’ revenues. Notice, however, that to obtain threshold T , one has to assume that the

constraint is binding. Thus, the model cannot solve for the value of T .

2.4 An Application to the Political Resource Curse

The model demonstrates that the nature of the relationship between corruption and public-good

spending depends on the existence of some threshold level of revenues. For an economy with

government revenues above the threshold, the agent can keep public spending constant even while

revenues are increasing. This implies that she can do so while remaining in office. In Section 3,

I propose a model that can sustain this equilibrium — one in which the corrupt agent survives

electoral competition by using her rents to buy votes. By such mechanism, the amount of public

spending associated with the threshold level of revenues captures, as it were, the maximum value of

public goods that is credibly demanded by the electorate. Beyond that level, it must be that their

marginal utility from directly sharing in the agent’s rents, i.e. from selling their votes, is greater

than that from obtaining additional public goods.

When might government revenues exceed the threshold? I conjecture that an economy is more

likely to be above the threshold the greater its reliance on revenues from oil, natural resources,

and other windfall gains. A large influx of windfall income that flow directly to public coffers

might be more easily captured through direct appropriation rather than indirectly by spending the

windfall on public goods and extracting bribes therefrom. Thus, in equilibrium, a corrupt agent

overseeing an economy with considerable windfall revenues would be more likely to increase her

rents as revenues increase by engaging in more theft, rather than more bribery.6 In contrast, an

economy that relies more heavily on tax revenues would be more likely to be below the threshold,

6This is indeed consistent with the formal literature on the political resource curse, where rent-seeking is modeled
as theft or the appropriation of resource revenues (see Desierto (2018)). The results here thus provide explicit
justification for why corruption is more aptly modeled as theft, rather than bribe-taking, when depicting a political
resource curse.
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in which case the agent can only keep extracting (bribe-)rents by spending more.

To show indirectly that such conjecture is plausible, Figure 3 plots military spending and corrup-

tion among countries that are reliant on oil revenues — those with oil rents greater than 10 percent

of GDP. In lieu of a measure for the theft of revenues, for which data are unavailable, panel (a)

uses (the incidence of) bribery, while panel (b) proxies for bribery by using a measure of corruption

that describes the lack of transparency in the public sector. There appears to be no association

between military spending and bribery, which would be consistent with the model since the latter

predicts that an economy above the threshold level of revenues would remain at a fixed level of

public spending and, thus, of bribe-rents. That is, if, above the threshold, the government increases

rents by stealing more (and keeping spending fixed) rather than taking more bribes from higher

spending, then spending and bribery would be unrelated. Note that the same pattern roughly holds

when the extent of reliance on oil is increased to greater than 20 percent of GDP (panels (c) and

(d).) In contrast, Figure 4 plots military spending and bribery among countries with less reliance

on oil, and shows that the two variables increase together. If such countries were indeed below the

threshold (and the marginal value of the public goods from which bribes are extracted is sufficiently

low), the model predicts that both bribe-rents and public spending would increase with revenues,

and would thus be positively associated.

Figure 5 confirms the patterns for countries that are more, and less, reliant on other types of

windfall income, e.g. revenues from minerals and foreign aid.

The model can thus be used to explain the political resource curse. An increase in government

revenues unambiguously increases corruption (in the form of theft) at the expense of public goods

— that is, the political resource curse always exists, when revenues exceed the minimum amount

of public spending that (just) satisfies the credible level of demand for public goods.

3 Political Accountability

Thus far, it is assumed that the government values social welfare to some extent λ ∈ (0, 1). This

variable can capture institutional checks and balances that limit the extent of rent-seeking by the

government. However, it can also describe the extent of political competition which pressures the

government to be more accountable to citizens. In this case, that λ < 1 implies that political

accountability is imperfect. I now show that this is supportable if candidates in elections share

their rents with the electorate by buying votes.7 That is, I endogenize λ by modeling electoral

7This is only one example. One can envisage situations in which politicians share rents through other forms of
patronage. Neither is electoral competition the only mechanism of (imperfect) political accountability that could
support a rent-seeking equilibrium — a similar logic can operate under alternative forms of competition, e.g. via
selectorate models in which the politician forms a coalition of supporters by offering to transfer some of her rents to
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Figure 3: Bribery and Spending Unrelated Above the Threshold
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This figure shows binned scatterplots of military spending and two alternative measures of corruption, for countries that are more reliant
on oil. Data used are from a pooled cross-section of countries for which some World Development Indicators are available between years
1997 to 2012 — specifically: bribery, which is the percentage of firms experiencing at least one bribe payment request; corruption, which
is the CPIA transparency, accountability, and corruption in the public sector rating (with 1 re-coded as most, and 6 least, transparent);
military, which is military expenditure as a percentage of GDP; and oil, which is oil rents as a percentage of GDP

competition.

I now consider two candidates competing in elections, and let principal 1 offer bribes to each of

them in exchange for a higher share in spending allocations once the candidate is in office. Each

candidate then uses their respective bribes to buy votes. In equilibrium, the candidate that is more

likely to win would allocate less spending to the bribing principal, which induces the latter to offer

a bribe amount that is larger than what it offers to the other candidate. That is, campaign money

(bribes) follows the more advantaged, i.e. popular, candidate. However, when candidates can also

use stolen revenues as additional funds, the more popular candidate does not necessarily obtain a

coalition members.
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Figure 4: Bribery and Spending Positively Associated Below the Threshold
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This figure shows binned scatterplots of military spending and two alternative measures of corruption, for countries that are less reliant
on oil. Data used are from a pooled cross-section of countries for which some World Development Indicators are available between years
1997 to 2012 — specifically: bribery, which is the percentage of firms experiencing at least one bribe payment request; corruption, which
is the CPIA transparency, accountability, and corruption in the public sector rating (with 1 re-coded as most, and 6 least, transparent);
military, which is military expenditure as a percentage of GDP; and oil, which is oil rents as a percentage of GDP

larger bribe. In this case, the bribe amounts that each candidate obtains depends on their relative

ability to steal and their relative ability to increase social welfare. I show that the larger bribe goes

either to the candidate who is relatively worse in both respects, or to the candidate who is relatively

worse only in the ability to steal (and relatively better at increasing social welfare), provided that

such disadvantage is sufficiently large. In this manner, the money (bribes) follows the candidate

that is relatively worse at finding other sources of campaign funds.

To proceed with the formal analysis, let each principal i = {1, 2} now explicitly consist of a

group of individuals who choose the public official – the agent, by electing a party or candidate

k = {A,B}. The game proceeds similarly, but with an additional last stage in which the agent is
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Figure 5: Positive Association Between Bribery and Spending More Apparent Below the Threshold
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This figure shows binned scatterplots of military spending and the incidence of bribery, for countries that are more reliant, and those
that are less reliant, on mineral rents and foreign aid. Data used are from a pooled cross-section of countries for which some World
Development Indicators are available between years 1997 to 2012 — specifically: bribery, which is the percentage of firms experiencing at
least one bribe payment request; military, which is military expenditure as a percentage of GDP; oil, which is oil rents as a percentage
of GDP; mineralrents, which is mineral rents as a percentage of GDP; and aidODA, which is the net official development assistance and
official aid received (in constant 2012 US$)

selected. Specifically, the leader of group 1 offers bribe/contribution schedules to each candidate,

who then announce her own policy. Each member of each group then vote for either candidate A

or B.

Suppose rents are now used by the candidates for campaign spending in order to sway some

voters. That is, there is a fraction of total voters who are ‘impressionable’ in that they respond

to such spending, while the rest are ‘strategic’ in that they vote only according to their policy

preference. Let rents come from bribes and stolen revenues.

While the main model in Section 2 conducts comparative statics on the public spending and

rent-seeking behavior of the incumbent agent with respect to revenues, the analyses here employ
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backward induction to compare the differences in the behavior of two potential incumbents —

specifically, in the level of public spending each would adopt if she were elected, and the amount

of rents each would obtain. Subsection 3.1 considers the case when the amount of revenues are at

or below the threshold level at which the no-theft constraint binds, in which case only bribe-rents

can be used as campaign funds. Subsection 3.2 assumes that revenues are above the threshold and

therefore the constraint is non-binding, in which case both bribe-rents and stolen revenues can be

used to influence impressionable voters. All the analyses pertain to interior solutions.

3.1 Bribery

The setup follows Grossman and Helpman (2001). There are N = N1 + N2 voters, with N1 > 0

voters belonging to group 1 and N2 > 0 to group 2. Group 2 is an unorganized sector that is

not capable of offering bribes, while group 1 can offer bribes. A voter can either be strategic or

impressionable. A strategic voter j in group i has utility V (gki ) + vkji, where k = {A,B} indexes the

candidate, with V ′(·) > 0, V ′′(·) < 0. That is, V (gki ) is the utility obtained from public spending to

be allocated by k to group i, and is thus group-specific, whereas vkji captures the voter’s particular

preference for k, and is thus voter-specific.8

Let vji = vBji − vAji denote the relative preference of voter j in group i for B over candidate A.

For both groups, let vji be uniformly distributed, with mean b/f and density f .

Strategic voter j in group i votes for A if and only if vji ≤ V (gAi ) − V (gBi ). This implies that

the fraction of the strategic voters in group i who vote for A is:9

sSi =
1

2
− b+ f [V (gAi )− V (gBi )] (17)

(Thus, if both candidates adopt the same policy position, i.e. gAi = gBi , then sSi = 1
2
− b.) With∑

Nis
S
i = sSN , one can solve for the fraction of total strategic voters sS who vote for A:

sS =
1

2
− b+ f

[N1

N
[V (gA1 )− V (gB1 )] +

N2

N
[V (gA2 )− V (gB2 )]

]
. (18)

Now assume that for each group i, there is a fraction µ of strategic voters, and a fraction 1 − µ
of impressionable voters who are influenced by campaign spending. The fraction of impressionable

voters in group i who vote for A when each candidate k spends bribes bk on the campaign is:

sIi =
1

2
− b+ e(bA − bB), (19)

8In Grossman and Helpman, the strategic voter’s utility is Vi(g
k) + vkji, where g is the vector of policies, which

in this case is g = (g1, g2). I simplify here by letting the first term be V (gki ) - voter j only cares about the spending
allocated to its own group, and by assuming that V takes the same functional form across groups.

9With mean b/f and density f , vji is uniformly distributed on the interval
[
2b−1
2f , 2b+1

2f

]
. The share of strategic

voters in group i who vote for A is thus f [V (gAi )− V (gBi )− ( 2b−1
2f )].
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where e captures the effectiveness of such campaign spending. With sIi the same across groups, the

vote share of A among all impressionable voters is thus

sI =
1

2
− b+ e(bA − bB). (20)

Finally, with µ as the share of strategic, and 1− µ the share of impressionable, voters, the overall

share of votes for A is the weighted share

s =
1

2
− b+ µf

[N1

N
[V (gA1 )− V (gB1 )] +

N2

N
[V (gA2 )− V (gB2 )]

]
+ (1− µ)e(bA − bB). (21)

Each candidate wants to maximize its probability of winning. For A, this probability is the proba-

bility that s > 1
2
, which is greatest when her choice of gAi maximizes

UA = µf [
N1

N
V (gA1 ) +

N2

N
V (gA2 )] + (1− µ)ebA. (22)

For B, the probability that s < 1
2

(or the probability that she wins) is greatest when her choice gBi
maximizes

UB = µf [
N1

N
V (gB1 ) +

N2

N
V (gB2 )] + (1− µ)ebB. (23)

Notice that UA and UB are similar. More importantly, they are similar to the specification of the

government’s objective function U in section 2 – the weight λ that is attached to social welfare

is now captured by parameters µ, f, e. Specifically, note that for the special case N1

N
= N2

N
= 1

2
,

Uk = µf
2

[V (gk1) + V (gk2)] + (1−µ)ebk, and if e = f
2
, then Uk = µ[V (gk1) + V (gk2)] + (1−µ)bk. In this

case, the weight λ that the incumbent government attaches to social welfare in section 2 is simply

motivated by the fraction µ of strategic voters.

Now recall that bribes are offered to the candidates by group 1. Group 1 thus has the problem

of maximizing its members’ expected benefit from g1, net of the bribes it gives to candidates A

and/or B. However, as before, it is constrained by the requirement that A and B each attain at

least their reservation utilities Uk, i.e. when bribes are zero. That is, the bribe offer has to at least

compensate each candidate from adopting a level of spending gi that is different from the level that

maximizes the welfare of the average strategic voter.

Group 1 derives total benefit N1V (gk1) if k is elected, and from its view, the ex-ante probability

that A is elected is F (∆), where

∆ = UA − UB = µf
[N1

N
[V (gA1 )− V (gB1 )] +

N2

N
[V (gA2 )− V (gB2 )]

]
+ (1− µ)e(bA − bB). (24)

Thus, group 1 solves:
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max
gki ,b

k
F (∆)N1V (gA1 ) + (1− F (∆))N1V (gB1 )−

∑
k

bk

s.t. µf [
N1

N
V (gk1) +

N2

N
V (gk2)] + (1− µ)ebk ≥ Uk,

(25)

for each k = {A,B}. Assuming that the constraints hold with equality, one can then obtain an

expression for the bribe schedule that is offered to each candidate:10

bk =
[ 1

(1− µ)e

][
Uk − µf [

N1

N
V (gk1) +

N2

N
V (gk2)]

]
. (26)

Recall that when there are no theft of government revenues, g2 = T − g1. Using this fact and

plugging in the expression for bk into group 1’s objective function, the group’s problem can be

re-cast as

max
gA1 ,g

B
1

F (∆ 6T )N1V (gA1 ) + (1− F (∆6T ))N1V (gB1 )

−
[ 1

(1− µ)e

][
(UA + UB)− µf [

N1

N
(V (gA1 ) + V (gB1 )) +

N2

N
(V (T − gA1 ) + V (T − gB1 ))]

]
,

(27)

where ∆6T is the same as equation (24), but now indexed by 6 T to distinguish this case as one in

which theft is not possible. This yields the following FOCs:

V ′(gA
∗

1 ) = αA
∗
V ′(T − gA∗1 ) (28)

V ′(gB
∗

1 ) = αB
∗
V ′(T − gB∗1 ), (29)

where αA
∗

=
µf

N2
N

µf
N1
N
−x

, αB
∗

=
µf

N2
N

µf
N1
N

+y
, are the equilibrium ‘weights’ candidate A and B, respectively,

attach to group 2’s marginal utility from public spending, and where I have defined the following:11

x ≡ N1F (∆ 6T )

N1
∂F

∂∆ 6T
[V (gB

∗
1 )−V (gA

∗
1 )]−[ 1

(1−µ)e
]

and y ≡ N1(1−F (∆ 6T ))

N1
∂F

∂∆ 6T
[V (gB

∗
1 )−V (gA

∗
1 )]+[ 1

(1−µ)e
]
. Also, let µf N1

N
6= x, µf N1

N
6=

−y.

I now show how each candidate A and B would allocate total spending between groups 1 and 2

by characterizing gk
∗

1 (and, hence, gk
∗

2 = T − gk∗1 ) in several ways.

First, in equilibrium, both A and B would offer not to spend all of revenues toward group 1,

since each candidate attaches non-zero weight to group 2’s marginal utility from public goods. That

is:

10In Grossman and Helpman, the case when the constraints hold with equality is interpreted as one in which the
group has a pure ‘influence’ motive. That is, it offers bribes in order to influence policy. They also consider the
case when the constraint is a strict inequality - in this case, the group also has an ‘electoral’ motive in that it gives
more than what is necessary to influence policy, which can then be used for greater campaign spending. They show,
however, that even with electoral motives, the qualitative results are the same - bribes are offered to both candidates.

11See appendix B.
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Proposition 7. Each candidate k = {A,B} offers gk
∗

1 < T .

In other words, both candidates would offer to spend on both groups, although the amount of

spending would not necessarily be the same. In particular, if candidate A’s ex-ante probability of

being elected is sufficiently high — higher than some threshold, then that candidate would allocate

less spending to group 1 than B would (which implies that A would allocate more to group 2 than

B would). The threshold decreases with the fraction (1− µ) of impressionable voters and the size

N1 of group 1. Thus, the smaller (1 − µ) and N1 are, the more likely it is that A would allocate

less to group 1 than B would. More precisely:

Proposition 8. Define threshold z ≡ 1
2
−

N1
∂F

∂∆ 6T
[V (gB

∗
1 )−V (gA

∗
1 )]

2
(1−µ)e

.

(i)F (∆6T ) > z ⇐⇒ gA∗1 < gB∗1 .

(ii)F (∆6T ) < z ⇐⇒ gA∗1 > gB∗1 .

(iii)F (∆ 6T ) = z ⇐⇒ gA∗1 = gB∗1 .

Proposition 8 thus implies that that the relatively more popular candidate would allocate rel-

atively less spending to group 1.12 The intuition is that such a candidate would have less need to

sway impressionable voters and, hence, less reliance on the campaign funds that group 1 offers.

I next show that the spending that is allocated to group 1 is almost always more than what is

socially optimal. That is, at least one candidate would allocate to 1 an amount that exceeds that

which the group would obtain if bribe offers were rejected. To do so, I first derive expressions for

Uk by letting bk = 0. In this case, Uk = µf [N1

N
V (gk1)+ N2

N
V (T −gk1)] which, when maximized, yields

FOCs:

V ′(gA
0

1 ) =
N2

N1

V ′(T − gA0

1 ) (30)

V ′(gB
0

1 ) =
N2

N1

V ′(T − gB0

1 ). (31)

Notice, then, that both A and B would offer the same public spending allocations if they rejected

the bribes.13 Such allocation is socially optimal since it weighs the total marginal utilities of each

12To see this, note from the definition of z that z takes on values equal to, less than, or greater than, 1
2 when,

respectively, V (gB
∗

1 ) = V (gA
∗

1 ), V (gB
∗

1 ) > V (gA
∗

1 ), and V (gB
∗

1 ) < V (gA
∗

1 ) or, respectively, gB
∗

1 = gA
∗

1 , gB
∗

1 > gA
∗

1 ,
and gB

∗

1 < gA
∗

1 . Thus, by condition (iii), if gB
∗

1 = gA
∗

1 , it must be that F (∆ 6T ) = z = 1
2 = 1 − F (∆6T ) – that is,

the candidates have equal probability of winning, or are equally popular. If gB
∗

1 > gA
∗

1 , then it must be that z < 1
2 .

Thus, if condition (i) holds, i.e. F (∆ 6T ) > z, it must also be true that F (∆6T ) > 1
2 – that is, A is more popular than

B. Similarly, if gB
∗

1 < gA
∗

1 , then it must be that z > 1
2 . Thus, if condition (ii) holds, i.e. F (∆6T ) < z, it must also be

true that F (∆6T ) < 1
2 – that is, A is less popular than B.

13Equations (30) and (31) imply that
V ′(gA

0

1 )

V ′(T−gA0
1 )

=
V ′(gB

0

1 )

V ′(T−gB0
1 )

. Suppose that gA
0

1 > gB
0

1 . Then V ′(gA
0

1 ) > V ′(gB
0

1 ),
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group only by their size, i.e. N1V
′(gk

0

1 ) = N2V
′(T − gk0

1 ). Henceforth, I omit the superscript k to

denote the socially optimal spending for group 1 as g0
1 (and for group 2 as T − g0

1).

Proposition 9 establishes the magnitudes of gk
∗

1 relative to the socially optimal amount g0
1:

Proposition 9. Recall z and note w from Lemma 3 (below).

(i) F (∆ 6T ) = z ⇐⇒ gA
∗

1 = gB
∗

1 > g0
1.

(ii) F (∆6T ) < z ⇐⇒
(ii.1) gA

∗
1 > gB

∗
1 > g0

1 if V (gA
∗

1 )− V (gB
∗

1 ) > w;

(ii.2) gA
∗

1 > g0
1 > gB

∗
1 if V (gA

∗
1 )− V (gB

∗
1 ) < w;

(iii) F (∆6T ) > z ⇐⇒
(iii.1) gB

∗
1 > gA

∗
1 > g0

1 if V (gB
∗

1 )− V (gA
∗

1 ) > w;

(iii.2) gB
∗

1 > g0
1 > gA

∗
1 if V (gB

∗
1 )− V (gA

∗
1 ) < w;

Recall from Proposition 8 that if candidate A’s ex-ante probability of being elected F (∆6T ) is

exactly equal to threshold z, then A and B would allocate the same amount of spending to group

1. Proposition 9 (condition (i)) establishes that this amount is greater than the socially optimal

level g0
1, while Lemmas 2 and 3 (below) reveal that this is because both candidates attach relatively

lower weight to group 1’s marginal utility from spending, i.e. αA
∗
, αB

∗
< N2

N1
, or x < 0, y > 0. If

F (∆6T ) < z, then by Proposition 8, candidate A would spend more on group 1 than B would which,

by Lemmas 2 and 3 imply that A puts higher weight to group 1’s marginal utility than to 2’s while

B assigns higher weight to 2’s marginal utility than to 1’s. If F (∆6T ) > z, it is candidate B that

would spend more on group 1. Nevertheless, by Proposition 9 (conditions (ii.2) and (iii.1)), both

A and B would still allocate to group 1 an amount above the social optimum if the difference in

the marginal value of their allocations to group 1 exceeds some threshold w.14 In turn, Lemma 3

shows that threshold w decreases with the fraction (1 − µ) of impressionable voters and the size

N1 of group 1. This implies that the larger (1 − µ) and N1 are, the more likely it is that both

A and B would overspend on this group, while the smaller these parameters, the more likely it is

that only either A or B would overspend on group 1. Note, then, that it is always the case that at

least one candidate would overspend on 1, which implies that, on expectation – that is, given each

candidate’s probability of being elected, public spending allocation would be socially inefficient.

Lemma 2. Recall x and y.

which requires that V ′(T−gA0

1 ) > V ′(T−gB0

1 ) and, in turn, that (T−gA0

1 ) > (T−gB0

1 ) or, re-arranging, 0 > gA
0

1 −gB
0

1 .

This contradicts gA
0

1 > gB
0

1 . One can derive an analogous contradiction for gA
0

1 < gB
0

1 . Thus, gA
0

1 = gB
0

1 , which

implies that (T − gA0

1 ) = (T − gB0

1 ).
14Otherwise (conditions (ii.1) and (iii.2)), only A or B allocates an amount above, while the other candidate

allocates below, the social optimum.
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(i) x > 0⇐⇒ αA
∗
> N2

N1
; (ii) x < 0⇐⇒ αA

∗
< N2

N1
; (iii) x = 0⇐⇒ αA

∗
= N2

N1
;

(iv) y > 0⇐⇒ αB
∗
< N2

N1
; (v) y < 0⇐⇒ αB

∗
> N2

N1
; (vi) y = 0⇐⇒ αB

∗
= N2

N1
.

Lemma 3. Define w ≡ 1
(1−µ)eN1

∂F

∂∆ 6T
.

(i) gA
∗

1 = gB
∗

1 ⇐⇒ x < 0, y > 0;

(ii) gA
∗

1 > gB
∗

1 ⇐⇒ x < 0, and

(ii.1) y > 0 if V (gA
∗

1 )− V (gB
∗

1 ) < w;

(ii.2) y < 0 if V (gA
∗

1 )− V (gB
∗

1 ) > w;

(iii) gA
∗

1 < gB
∗

1 ⇐⇒ y > 0, and

(iii.1) x > 0 if V (gB
∗

1 )− V (gA
∗

1 ) > w;

(iii.2) x < 0 if V (gB
∗

1 )− V (gA
∗

1 ) < w.

One last characterization of gk
∗

1 can be made by using the restriction that bribes are non-negative.

Plugging Uk = µf [N1

N
V (g0

1) + N2

N
V (T − g0

1)] into equation (26) gives equilibrium bribe offer by k:

bk
∗

=
[ 1

(1− µ)e

][
µf [

N1

N
(V (gk

0

1 )− V (gk
∗

1 )) +
N2

N
(V (T − gk0

1 )− V (T − gk∗1 ))]
]
. (32)

If bk
∗ ≥ 0, it must be that [V (gk

∗
1 )− V (gk

0

1 )] ≤ N2

N1
[V (T − gk0

1 )− V (T − gk∗1 )]. Thus:

Proposition 10. The equilibrium allocation offered by candidate k = {A,B} is such that, for each

k,
V (T−g0

1)

V (T−gk∗1 )
≥ αk

∗
N1+N2

2N2
.

Notice that the larger group 1 is, the larger the RHS of condition
V (T−g0

1)

V (T−gk∗1 )
≥ αk

∗
N1+N2

2N2
is, and

the larger gk
∗

1 must be relative to g0
1 (and, thus, the smaller T − gk∗1 is relative to T − gk0

1 ), in order

that the LHS is sufficiently high for the condition to hold. Thus, Propositions 9 and 10 imply that

social inefficiencies (from bribe-taking) are higher the larger the size of the bribing sector.

Finally, given what candidates A and B would allocate to group 1, how much bribes would the

latter offer to each candidate in equilibrium?

Using (33), one can take the difference:

bA
∗ − bB∗ =

[ 1

(1− µ)e

]
µf
[N1

N
[V (gB

∗

1 )− V (gA
∗

1 )] +
N2

N
[V (T − gB∗1 )− V (T − gA∗1 )]

]
. (33)

Proposition 11 establishes that group 1 offers relatively more bribes to the candidate that would

allocate less spending to the group.

Proposition 11.

(i)gA
∗

1 > gB
∗

1 ⇐⇒ bA
∗
< bB

∗
;
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(ii) gA
∗

1 < gB
∗

1 ⇐⇒ bA
∗
> bB

∗
;

(iii) gA
∗

1 = gB
∗

1 ⇐⇒ bA
∗

= bB
∗
.

The intuition is the following. The more popular candidate has less need for campaign funds

and would thus allocate less spending to the group that provides such funds, while the less popular

candidate would allocate more. This would then induce the group to offer relatively larger bribes

to the former and less to the latter — otherwise, the candidates would reject the bribe offers and

instead choose the socially optimal public spending allocation, which is lower than the expected

allocation if the bribe offers had been accepted.15 Thus, in equilibrium, the difference in bribe-offers

to each candidate reflects the difference in the allocations of each candidate, given the difference

in their probability of being elected, such that the expected utility of group 1 (from the expected

allocations) is maximized. See Figure 6 for a graphical depiction.16

3.2 Bribery and Theft

I now consider the case when the no-theft constraint is slack, such that the candidate can also

obtain rents from the theft of government revenues. To keep as close as possible to Grossman

and Helpman, I let the agent use (anticipated) stolen revenues the way she uses the bribes from

group 1, that is, to influence impressionable voters.17 I show that with such additional campaign

funds, it is still the case that the candidate that has the higher probability of being elected would

offer relatively lower spending to group 1. However, this does not have clear implications on the

candidates’ allocations to group 2. In the previous case in which there is no theft of revenues, a

relatively lower spending allocation to group 1 leaves relatively more revenues to be spent on group

2. Now when some of the revenues can be stolen, the candidate that spends relatively less on group

1 may also steal relatively more, and thereby also spend relatively less on group 2.

The possibility that candidates can steal different amounts also implies that, without bribe-

rents, the candidate that steals more has relatively more campaign funds. Group 1 now has to

consider that candidates can have different ex-ante capabilities of influencing impressionable voters.

In equilibrium, unlike in the case when the no-theft constraint is binding, the candidate that is

more likely to be elected does not necessarily obtain larger bribes.

15Note, then, that cases (ii) and (iii) of Proposition 9 imply that the equilibrium probability distribution over gA1
and gB1 always gives an expected allocation to group 1 that is larger than g01 – that is, even when one candidate
allocates at a level below g01 .

16The bribe curves in Figure 6 are drawn such that difference in bribe-offers to candidates A and B is a fraction of
the difference in spending by A and B on group 1. It is possible, however, for the marginal utility of such spending
to be sufficiently high such that the difference in bribe-offers is larger than the difference in the amounts spent on 1.

17The fact that the actual theft occurs once the agent is in office is irrelevant. Candidates either advance the
‘payment’ to impressionable voters, or simply promise to pay them after the election. Note that the model similarly
ignores the timing of the payment of bribes, as it only solves for the equilibrium bribe offer.
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Figure 6: Public Spending by, and Bribe-Offers to, Candidates A and B

0

T

1
2

1

F (∆ 6T ) (probability that A is elected)

gA1 , g
B
1 , g

0
1

bA, bB

gA1 gB1

gB1 gA1

bB bA

bA bB

g0
1

This figure plots the amount of public spending that each candidate A and B, if elected, would allocate to group 1
(respectively depicted by red curves gA1 and gB1 ), and the bribe-offers of this group to each candidate (depicted by
blue curves bA and bB), on the probability F (∆ 6T ) that A is elected. Note that spending is always allocated to both
groups 1 and 2, which is why, even at F (∆ 6T ) = 0 and F (∆6T ) = 1, gA1 and gB1 are between 0 and total revenues
T . When the candidates have equal probability of being elected, i.e. F (∆ 6T ) = 1

2 = 1 − F (∆ 6T ), the candidates
would allocate the same amount of spending to group 1, which is higher than the socially optimal amount g01 , i.e.
gA1 = gB1 > g01 . When candidate A has a relatively lower probability of being elected, she would allocate to group 1
an amount that is higher than what B would allocate, and higher than what is socially optimal. (Thus, in the region
where F (∆ 6T ) < 1

2 , either gA1 > gB1 > g01 or gA1 > g01 > gB1 .) This would enable group 1 to offer less bribes to A, and
more to B, i.e. bA < bB , thereby maximizing its expected utility from the spending allocations of each candidate.
(An analogous pattern holds in the region where F (∆6T ) > 1

2 .)

To proceed with the formal analysis, I now add stolen revenues T −gk1−gk2 to each candidate k’s

campaign funds such that the vote share of A among impressionable voters is sI = 1
2
− b + e(bA −

bB + (T − gA1 − gA2 ) − (T − gB1 − gB2 )) = 1
2
− b + e(bA − bB + gB1 − gA1 + gB2 − gA2 ). The total vote

share of A is now:

s =
1

2
−b+µf

[N1

N
[V (gA1 )−V (gB1 )]+

N2

N
[V (gA2 )−V (gB2 )]

]
+(1−µ)e(bA−bB+gB1 −gA1 +gB2 −gA2 ). (34)

Thus, A and B’s respective probability of winning are highest when the following are maximized:

UA = µf [
N1

N
V (gA1 ) +

N2

N
V (gA2 )] + (1− µ)e(bA − gA1 − gA2 ) (35)

UB = µf [
N1

N
V (gB1 ) +

N2

N
V (gB2 )] + (1− µ)e(bB − gB1 − gB2 ), (36)
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and the ex-ante probability that A is elected is F (∆) where, now,

∆ = UA−UB = µf
[N1

N
[V (gA1 )−V (gB1 )]+

N2

N
[V (gA2 )−V (gB2 )]

]
+(1−µ)e(bA−bB−(gA1 +gA2 )+(gB1 +gB2 )).

(37)

Group 1 thus solves:

max
gki ,b

k
F (∆)N1V (gA1 ) + (1− F (∆))N1V (gB1 )−

∑
k

bkT

s.t. µf [
N1

N
V (gk1) +

N2

N
V (gk2)] + (1− µ)e(bkT − gk1 − gk2) ≥ Uk

T (a)

gk1 + gk2 ≤ T (b),

(38)

for each k = {A,B}, and bribes bkT and the agent’s reservation utility Uk
T are subscripted by T to

distinguish the case when theft can occur.

Note that when constraint (b) is binding, ∆ collapses back to equation (24), and the optimization

problem reduces to (27) - the case of no theft, by letting gk1 = T − gk2 .

To see this, note that one gets the following expression for bribes by letting constraint (a) bind

with equality:

bkT =
[ 1

(1− µ)e

][
Uk
T − µf [

N1

N
V (gk1) +

N2

N
V (gk2)]

]
+ gk1 + gk2 , (39)

where the reservation utilities are given by Uk
T = µf [N1

N
V (gk

0

1 ) + N2

N
V (gk

0

2 )]− (1−µ)e(gk
0

1 + gk
0

2 ), i.e.

when bribes are rejected. Plugging the expression in (39) into the maximand of (38), the problem

then becomes:

max
gk1 ,g

k
2

F (∆)N1V (gA1 ) + (1− F (∆))N1V (gB1 )

−
[ 1

(1− µ)e

][
(UA

T + UB
T )− µf [

N1

N
(V (gA1 ) + V (gB1 )) +

N2

N
(V (gA2 ) + V (gB2 ))]

]
− (gA1 + gA2 )− (gB1 + gB2 ),

s.t. gA1 + gA2 − T ≤ 0; gB1 + gB2 − T ≤ 0.
(40)

The previous no-theft case is the special instance when the constraints bind, i.e. gk1 = T − gk2 , Uk
T

becomes Uk = µf [N1

N
V (gk

0

1 ) + N2

N
V (T − gk0

1 )], and F (∆) becomes F (∆ 6T ), in which case solving (40)

is equivalent to solving (27).18

18That is, the problem becomes maxgA1 ,gB1 F (∆ 6T )N1V (gA1 ) + (1− F (∆ 6T ))N1V (gB1 )

−
[

1
(1−µ)e

][
(UA +UB)− µf [N1

N (V (gA1 ) + V (gB1 )) + N2

N (V (T − gA1 ) + V (T − gB1 ))]
]
− 2T , whose solution is the same

as that of (27).
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To obtain the equilibrium when the constraints are slack and, thus, theft occurs, I derive the

Kuhn-Tucker conditions from (40):19

N1F (∆)V ′(gA
∗

1 ) + 1− λA∗ − ∂∆

∂gA
∗

1

[
N1

∂F

∂∆
[V (gB

∗

1 )− V (gA
∗

1 )]− 1

(1− µ)e

]
= 0 (41)

1− λA∗ − ∂∆

∂gA
∗

2

[
N1

∂F

∂∆
[V (gB

∗

1 )− V (gA
∗

1 )]− 1

(1− µ)e

]
= 0 (42)

N1(1− F (∆))V ′(gB
∗

1 )− 1− λB∗ − ∂∆

∂gB
∗

1

[
N1

∂F

∂∆
[V (gB

∗

1 )− V (gA
∗

1 )] +
1

(1− µ)e

]
= 0 (43)

−1− λB∗ − ∂∆

∂gB
∗

2

[
N1

∂F

∂∆
[V (gB

∗

1 )− V (gA
∗

1 )] +
1

(1− µ)e

]
= 0 (44)

λA
∗
(gA

∗

1 + gA
∗

2 − T ) = 0 (45)

λB
∗
(gB

∗

1 + gB
∗

2 − T ) = 0, (46)

where λk
∗

are the Lagrange multipliers.

Imposing λA
∗

= 0, (45) implies that gA
∗

1 + gA
∗

2 < T while (41) and (42) imply that (i) N1 =

(
∂gA

∗
2

∂gA
∗

1

− 1)( 1
V ′(gA

∗
1 )F (∆)

), where
∂gA

∗
2

∂gA
∗

1

= ∂∆
∂gA

∗
1

∂gA
∗

2

∂∆
=

µf
N1
N
V ′(gA

∗
1 )−(1−µ)e

µf
N2
N
V ′(gA

∗
2 )−(1−µ)e

. Imposing λB
∗

= 0, (46) implies

that gB
∗

1 + gB
∗

2 < T while (43) and (44) imply that (ii) N1 = (1 − ∂gB
∗

2

∂gB
∗

1

)( 1
V ′(gB

∗
1 )(1−F (∆)

), where

∂gB
∗

2

∂gB
∗

1

= ∂∆
∂gB

∗
1

∂gB
∗

2

∂∆
=
−µf N1

N
V ′(gB

∗
1 )+(1−µ)e

−µf N2
N
V ′(gB

∗
2 )+(1−µ)e

. Equating (i) and (ii) and re-arranging, the equilibrium

when theft occurs thus satisfies:

V ′(gA
∗

1 )

V ′(gB
∗

1 )
=

(1− F (∆))(
∂gA

∗
2

∂gA
∗

1

− 1)

F (∆)(1− ∂gB
∗

2

∂gB
∗

1

)
(47)

The following results are readily obtained.

Proposition 12. Both candidates offer to allocate some spending on each sector. That is, gk
∗
i > 0

for i = {1, 2}, k = {A,B}.

Lemma 4. For each k = {A,B}, ∂gk
∗

2

∂gk
∗

1

6= |1|. If
∂gA

∗
2

∂gA
∗

1

≷ 1, then
∂gB

∗
2

∂gB
∗

1

≶ 1, and vice-versa.

Proposition 13. Let w ≡ (
∂gA

∗
2

∂gA
∗

1

− 1)(
∂gA

∗
2

∂gA
∗

1

− ∂gB
∗

2

∂gB
∗

1

).

(i) F (∆) > w ⇐⇒ gA
∗

1 < gB
∗

1 .

(ii) F (∆) < w ⇐⇒ gA
∗

1 > gB
∗

1 .

(iii) F (∆) = w ⇐⇒ gA
∗

1 = gB
∗

1 .

19See appendix C for the derivation of (41) to (44).
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Proposition 13 implies that the candidate that has a relatively higher probability of being elected

would allocate relatively more spending to group 1.20 This result is similar to the case when the

no-theft constraint is binding – recall Proposition 8. Now, however, both candidates would either

overspend on group 1, or on group 2, depending on the relative size of the groups, as established

by Proposition 14 and Corollary 2 below. In the previous case when the only source of campaign

funds are bribe-rents and, hence, group 1, at least one candidate overspends on group 1. Now that

rents from theft can also be used to buy votes, there is less dependence on group 1, which allows

both candidates to cater more to group 2 as the latter becomes large.

Proposition 14. Neither candidate offers the socially optimal allocation. Both of them either

overspend on group 1 or group 2.

Note that when N1 is large, it is easier to meet condition
V ′(gk1 )

V ′(gk2 )
>

V ′(g0
1)

V ′(T−g0
1)

= N2

N1
than

V ′(gk1 )

V ′(gk2 )
<

V ′(g0
1)

V ′(T−g0
1)

= N2

N1
. Thus:

Corollary 2. Both candidates are more likely to overspend on group 1 than on group 2 the larger

the size of the former.

To complete the analysis, I now compare the equilibrium bribe offers to candidates A and B.

Plugging Uk
T into (39) to get

bk
∗

T =
[ 1

(1− µ)e

][
µf [

N1

N
(V (gk

0

1 )−V (gk
∗

1 )) +
N2

N
(V (gk

0

2 )−V (gk
∗

2 ))]
]

+ gk
∗

1 + gk
∗

2 − (gk
0

1 + gk
0

2 ), (48)

one can take the difference:

bA
∗

T − bB
∗

T =
[ 1

(1− µ)e

][
µf [

N1

N
(V (gA

0

1 )− V (gA
∗

1 ) + V (gB
∗

1 )− V (gB
0

1 ))

+
N2

N
(V (gA

0

2 )− V (gA
∗

2 ) + V (gB
∗

2 )− V (gB
0

2 ))]
]

+(gA
∗

1 + gA
∗

2 )− (gA
0

1 + gA
0

2 ) + (gB
0

1 + gB
0

2 )− (gB
∗

1 + gB
∗

2 ).

(49)

It is not always the case that gA
0

1 = gB
0

1 and gA
0

2 = gB
0

2 , since gk
0

i only requires
V ′(gk

0

1 )

V ′(gk
0

2 )
= N2

N1
for

each k = {A,B}.21 However, the latter implies that if gA
0

1 = gB
0

1 , then gA
0

2 = gB
0

2 , and vice versa.

20To see this, note that F (∆) ≷ w ⇐⇒ 1 − F (∆) ≶ 1 − w, while F (∆) = w ⇐⇒ 1 − F (∆) = 1 − w. Now it
must be that w is between 0 and 1. (Otherwise, if w < 0 or w > 1, then 1 − F (∆) > 1 − w and F (∆) < w cannot
both be true.) This implies that when gA

∗

1 = gB
∗

1 , for both F (∆) = w and 1− F (∆) = 1− w to be true, it must be
that w = 1

2 , which means that F (∆) = 1
2 = 1− F (∆). That is, candidates A and B have equal probability of being

elected. Now, when gA
∗

1 > gB
∗

1 , for both F (∆) < w and 1 − F (∆) > 1 − w to be true when w ∈ (0, 1), it must be
that F (∆) < 1− F (∆). Analogously, when gA

∗

1 < gB
∗

1 , for both F (∆) > w and 1− F (∆) < 1− w to be true when
w ∈ (0, 1), it must be that F (∆) > 1− F (∆).

21If k were to reject the bribe, she would choose gk
0

i by solving maxgk1 ,gk2 U
k
T = µf [N1

N V (gk
0

1 ) + N2

N V (gk
0

2 )] − (1 −

µ)e(gk
0

1 + gk
0

2 ), s.t. gk
0

1 + gk
0

2 ≤ T when the constraint is slack, which yields
V ′(gk

0

1 )

V ′(gk
0

2 )
= N2

N1
.
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The following result thus only needs to assume that there would be no difference in the candidates’

behavior toward principal 1 if they were to reject the latter’s offer, i.e. gA
0

1 = gB
0

1 .

Proposition 15. Let gA
0

1 = gB
0

1 . Define x ≡ (T − gA
∗

1 − gA
∗

2 ) − (T − gB
∗

1 − gB
∗

2 ) = (gB
∗

1 +

gB
∗

2 ) − (gA
∗

1 + gA
∗

2 ) as the difference in stolen revenues from electing candidate A over B, and

y ≡ [N1

N
V (gB

∗
1 ) + N2

N
V (gB

∗
2 )]− [N1

N
V (gA

∗
1 ) + N2

N
V (gA

∗
2 )] as the difference in social welfare from elect-

ing candidate B over A. Then:

(i) x < [ µf
(1−µ)e

]y ⇐⇒ bA
∗

T > bB
∗

T .

(ii) x > [ µf
(1−µ)e

]y ⇐⇒ bA
∗

T < bB
∗

T .

(iii) x = [ µf
(1−µ)e

]y ⇐⇒ bA
∗

T = bB
∗

T .

Thus, by Proposition 15, bribes augment stolen revenues such that the candidate that obtains

larger bribes is either: (i) one who is relatively worse both in her ability to steal revenues and the

ability to increase social welfare, i.e. x < 0 and y > 0, or, x > 0 and y < 0; or, when one is

relatively worse in one respect but better in the other, i.e. x, y < 0 or x, y > 0, (ii) to the candidate

who is less able to steal revenues provided that the relative disadvantage is sufficiently high, i.e.
x
y
> µf

(1−µ)e
≡ µ̄. To see the latter, note that if x, y < 0, A is worse at stealing but better at

improving social welfare. In this case, Proposition 15 implies that x
y
> µ̄⇐⇒ bAT > bBT — A obtains

higher bribes. If x, y > 0, B is worse at stealing but better at improving social welfare. In this case,
x
y
> µ̄⇐⇒ bAT < bBT — B obtains higher bribes.

In what follows, I graphically depict the results established by Propositions 13 and 15. First,

Figures 7 and 8 illustrate the equilibrium public spending allocations of candidates A and B. By

Proposition 13, the candidate with the higher probability of being elected allocates relatively less

spending to group 1. Note, then, that the gA1 curve lies below (above) the gB1 curve at values of

F (∆) greater (less) than 1
2
, with the curves intersecting at F (∆) = 1

2
. Since theft is now possible,

the total amount of spending Sk ≡ gk1 + gk2 of each candidate k ∈ {A,B} need not equal revenues

T — the SA and SB curves can lie below T . Thus, unlike in Figure 6 – the no-theft case where

the amount allocated to group 2 is the distance between T and the gk1 curve, here it is the distance

between the Sk and gk1 curves. This means that gA1 < gB1 does not imply gA2 > gB2 , precisely because

the candidates may differ in the total amounts Sk that each would spend and, therefore, in the

amounts T − Sk that each would steal.

I depict two special cases. In Figure 7, the candidates always steal the same amount of revenues,

in which case the spending curves SA and SB intersect at all values of F (∆). Notice that a relatively

higher allocation to group 1 implies a relatively lower allocation to group 2. Thus, as in the case

when the no-theft constraint is binding, F (∆) ≶ 1
2
⇐⇒ gA1 ≷ gB1 ⇐⇒ gA2 ≶ gB2 . In Figure 8, the

candidates steal an amount that is each a fixed proportion of each of their allocations to group 1
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or, equivalently, Sk ∝ gk1 . In this case, SA and SB intersect at a unique point – panel (a) shows

them intersecting at the point at which F (∆) = A1, with A1 ∈ [0, 1
2
), while panel (b) shows the

intersection at F (∆) = A2, with A2 ∈ (1
2
, 1].22 Notice that when the spending curves intersect at

F (∆) = A1, then gA1 < gB2 at all values of F (∆). When they intersect at F (∆) = A2, then gA2 > gB2
at all values of F (∆). That is, the candidate that steals at a higher rate, i.e. for which the vertical

distance between Sk and gk1 is smaller, always allocates relatively less spending to group 2.

Figure 7: Public Spending by Candidates A and B, with A and B Stealing the Same Amount of
Revenues

0

T

1
2

1

F (∆) (probability that A is elected)

SA SB

gA1 gB1

This figure plots the amount of public spending that each candidate A and B, if elected, would allocate to group
1 (respectively depicted by red curves gA1 and gB1 ) on the probability F (∆) that A is elected, assuming that A and
B would always the spend the same total amount, i.e. the total spending curves SA ≡ gA1 + gA2 and SB ≡ gB1 + gB2
intersect at all values of F (∆). (The amounts A and B would each allocate to group 2, i.e. gA2 and gB2 , are given by
the vertical distance between SA and gA1 , and between SB and gB1 , respectively.) This means that the candidates
would also steal the same amount of revenues, given by the vertical distance between revenues T and SA or SB . The
candidate that has relatively lower probability of being elected would allocate relatively more spending to group 1 –
when F (∆) is less (greater) than 1

2 , the gA1 curve lies above (below) the gB1 curve. At F (∆) = 1
2 , gA1 = gB1 . Because

total spending is the same for both candidates, the reverse pattern holds for gA2 , g
B
2 , i.e. gA2 ≷ g

B
2 when F (∆) ≶ 1

2 .

Next, I infer the equilibrium amount of bribes that group 1 would offer to candidates A and

B using Proposition 15. In Figure 7, SA = SB and, at F (∆) = 1
2
, gA1 = gB1 . Thus, x and y from

Proposition 15 are equal to zero, which implies that group 1 offers the same amount of bribes to

the candidates, i.e. bAT = bBT . In the region F (∆) ∈ (1
2
, 1], gA1 < gB1 . Since SA = SB, then x = 0

22There are many other equilibria depending on how much revenues each candidate would steal at each value of
F (∆). The Sk curves may not intersect, or intersect at multiple points.
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Figure 8: Public Spending by Candidates A and B, with A and B Stealing at Fixed Rates

0

T

1
2

1

F (∆) (probability that A is elected)

A1

SA
SB

gA1 gB1

(a) candidate A stealing at a higher rate than
B

0

T

1
2
A2 1

F (∆) (probability that A is elected)

SA
SB

gA1
gB1

(b) candidate B stealing at a higher rate than
A

This figure plots the amount of public spending that each candidate A and B, if elected, would allocate to group 1
(respectively depicted by red curves gA1 and gB1 ) on the probability F (∆) that A is elected, assuming that each steals
an amount that is each a fixed proportion of each of their allocations to group 1. In panel (a), A steals at a higher
rate than B, such that the candidates’ respective total spending curves SA ≡ gA1 +gA2 and SB ≡ gB1 +gB2 intersect at
F (∆) = A1 <

1
2 , while in panel (b), where B steals at a higher rate than A, the spending curves intersect at A2 >

1
2 .

The amounts that each candidate would allocate to group 2, i.e. gA2 and gB2 , are given by the respective distances
between SA and gA1 , and between SB and gB1 . Notice, then, that the candidate that steals at a higher rate spends
relatively less on group 2. From (a), when SA and SB intersect (only) at a value of F (∆) that is less than 1

2 , it is
always the case that gA2 < gB2 . From (b), when the point of intersection is at some value of F (∆) greater than 1

2 ,
then gA2 > gB2 . As for the spending on group 1, it is still the case (as in Figure 7) that when F (∆) ≷ 1

2 , gA1 ≶ g
B
1 .

and, in addition, because gA1 and gB1 are symmetric, then |gA1 − gB1 | = |gA2 − gB2 |, which means

y = 0. Thus, with x, y = 0, bAT = bBT . Lastly, when F (∆) ∈ [0, 1
2
), gA1 > gB1 , but since SA = SB

and gA1 and gB1 are symmetric, it is still the case that both x and y are zero and, hence, bAT = bBT .

Thus, if the candidates would always steal the same amount, they would always obtain the same

amount of bribes. This is because if the bribe offers are rejected, the candidates would still get the

same amount of rents (in the form of stolen revenues) and, thus, still have the same ability to sway

impressionable voters.23

In Figure 8, where each candidate steals at a fixed rate, SA is equal to SB only at some unique

value of F (∆) – that is, at A1 <
1
2

in panel (a), and A2 >
1
2

in panel (b). Recall that when SA

and SB intersect at a value of F (∆) less (greater) than 1
2
, then it is always the case that gA2 < gB2

(gA2 > gB2 ). Now in panel (a), note that at F (∆) ∈ [0, A1), SA > SB, which means that x < 0.

It is also the case that gA1 > gB1 . For x < 0 to hold, it must be that gB1 − gA1 < gA2 − gB2 which,

23Note, then, from equation (49) that when SA = SB (and recalling the assumption gA
0

1 = gB
0

1 in Proposition 15),
the difference bAT − bBT is equal to zero.
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with gA2 < gB2 , implies that y > 0. Since x < 0 and y > 0, then bAT > bBT by Proposition 15. At

F (∆) = A1, SA = SB, which means x = 0. It is still the case that gA1 > gB1 . For x = 0 to hold,

it must be that gB1 − gA1 = gA2 − gB2 which, with gA2 < gB2 , implies that y = 0. Thus, bAT = bBT . At

F (∆) ∈ (A1,
1
2
), SA < SB, which means x > 0. It is still the case that gA1 > gB1 . For x > 0 to

hold, it must be that gB1 − gA1 > gA2 − gB2 which, with gA2 < gB2 , implies that y < 0. Thus, bAT < bBT .

Finally, at F (∆) ∈ (1
2
, 1], SA < SB and, hence, x > 0, which in turn requires gB1 − gA1 > gA2 − gB2 .

However, it is now the case that gA1 < gB1 . Thus, for gB1 − gA1 > gA2 − gB2 to hold when gA2 < gB2 , it

must be that y > 0. With x, y > 0, bAT ≶ bBT if x
y
≷ µf

(1−µ)e
≡ µ̄, while bAT = bBT if x

y
= µ̄, where µ̄

is some threshold ratio of one candidate’s relative ability to steal to the other candidate’s relative

ability to improve social welfare.

By symmetry, the case when SA and SB intersect at A2 — see panel (b), can be viewed from

B’s perspective as the case when SA and SB intersect at A1. Thus, the following summarizes the

results for the special case in which candidates steal an amount of revenues that is each a fixed

proportion of each candidate’s allocations to group 1.

Let SA = SB (only) at F (∆) = A1, where A1 ∈ [0, 1
2
). That is, candidate A steals at a higher

rate than B. Then:

0 ≤ F (∆) < A1 ⇐⇒ gA1 > gB1 , S
A > SB ⇐⇒ bAT > bBT

F (∆) = A1 ⇐⇒ gA1 > gB1 , S
A = SB ⇐⇒ bAT = bBT

A1 < F (∆) ≤ 1

2
⇐⇒ gA1 ≥ gB1 , S

A < SB ⇐⇒ bAT < bBT

1

2
< F (∆) ≤ 1⇐⇒ gA1 < gB1 , S

A < SB ⇐⇒ bAT ≶ bBT if
x

y
≷ µ̄(otherwise bAT = bBT )

Let SA = SB (only) at F (∆) = A2, where A2 ∈ (1
2
, 1]. Then, by symmetry:

0 ≤ F (∆) <
1

2
⇐⇒ gA1 > gB1 , S

A > SB ⇐⇒ bAT ≷ bBT if
x

y
≷ µ̄( otherwise bAT = bBT )

1

2
≤ F (∆) < A2 ⇐⇒ gA1 ≤ gB1 , S

A > SB ⇐⇒ bAT > bBT

F (∆) = A2 ⇐⇒ gA1 < gB1 , S
A = SB ⇐⇒ bAT = bBT

A2 < F (∆) ≤ 1⇐⇒ gA1 < gB1 , S
A < SB ⇐⇒ bAT < bBT

Figure 9 illustrates these results by plotting the relationship between the probability F (∆) of A

being elected and the bribes offered to A and B in cases in which SA and SB intersect (uniquely)
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Figure 9: Bribe-Offers to Candidates A and B

0 1
2

F (∆) (probability that A is elected)

1

SA = SB
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bAT

bBT

(a) candidate A steals at a higher rate than B; x
y
> µ̄

0 1
2

F (∆) (probability that A is elected)

1

SA = SB

A2

bAT

bBT

(b) candidate B steals at a higher rate than A; x
y
> µ̄

0 1
2

F (∆) (probability that A is elected)

1A1

SA = SB

bBT

bAT

(c) candidate A steals at a higher rate than B; x
y
< µ̄

0 1
2

F (∆) (probability that A is elected)

1A2

bAT

bBT

SA = SB

(d) candidate B steals at a higher rate than A; x
y
< µ̄

This figure plots the bribe-offers of group 1 to each candidate A and B (respectively depicted by blue curves bAT and
bBT ) on the probability F (∆) that A is elected, assuming that A and B steal an amount of revenues that is each a
fixed proportion of each candidate’s allocation to group 1. That is, there is a unique value of F (∆) at which A and
B would spend the same amount, i.e. SA = SB . Below (above) this value, SA is greater (less) than SB and, hence,
A would steal less (more) than B (in absolute amounts). Panels (a) and (b) illustrate the case when the ratio of A’s
relative ability to steal revenues, x, to B’s relative ability to improve social welfare, y, is larger than threshold µ̄,
i.e. x

y > µ̄, with (a) depicting the case when SA and SB intersect at F (∆) = A1 <
1
2 , and (b) at F (∆) = A2 >

1
2 .

Panels (c) and (d) are when x
y < µ̄, with (c) depicting the case when SA and SB intersect at F (∆) = A1 <

1
2 , and

(d) at F (∆) = A2 >
1
2 .
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at any value of F (∆), i.e. at A1, or A2, where A1 ∈ [0, 1
2
) and A2 ∈ (1

2
, 1], and when the ratio of a

candidate’s relative ability to steal to its relative ability to improve social welfare, i.e. x
y
, is higher,

and when it is lower, than threshold µ̄.

Notice, then, that the candidate that is more likely to win does not always obtain larger bribes.

In panels (a) and (c), candidate A receives more bribes than B when F (∆) is between 0 and A1,

that is, when A has lower probability of being elected than B. Analogously, as seen in panels (b)

and (d), candidate B obtains larger bribes even if its probability of winning is less than 1
2
, i.e. when

F (∆) is between A2 and 1.

The results are a stark contrast to the case in which the no-theft constraint binds. When the

candidates’ only source of campaign funds are bribes, the candidate that is more likely to be elected

always obtains more bribes. However, this is not necessarily true when candidates can also use

stolen revenues to sway impressionable voters. Generally, larger bribes are given to the candidate

that is either disadvantaged both in the relative ability to steal and the relative ability to improve

social welfare, i.e. x < 0, y > 0 or x > 0, y < 0 or, if one candidate is relatively worse in one respect

but better in the other, to the candidate that is relatively worse at stealing, provided that such

relative disadvantage is sufficiently high, i.e. x
y
> µ̄.

4 Conclusion

This paper formally analyzes public-good spending by a politician who can obtain rents by steal-

ing government revenues or spending those revenues in exchange for bribes. To the best of my

knowledge, the model I have proposed is the first to simultaneously consider these two types of

corruption. The analysis generates several important results.

The relationship between government revenues, corruption and public goods spending hinges on

whether the revenues are above or below some threshold level. Below this threshold, the politician

is constrained to spend all of the revenues and, thus, does not steal. However, she can still obtain

rents by spending the revenues in exchange for bribes. In such a case in which bribery is the only

source of corruption, an increase in revenues unambiguously increases public-good spending because

nothing is stolen, and can decrease corruption when the marginal value of the public goods from

which bribes are extracted is sufficiently high.

The threshold level of revenues thus captures, in effect, the threshold demand for public-good

spending that the politician is constrained to satisfy. If government revenues are larger than the

threshold level, the politician can then steal the ‘extra’ revenues. I find that all additional revenues

above the threshold are stolen and, thus, public spending does not increase any further. Because

spending does not increase, bribes are also constant. However, corruption increases in the form of

theft as revenues increase above the threshold.
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The implication is that the political resource curse, whereby revenues increase corruption at the

expense of public-good provision, occurs because revenues from oil, natural resources, and other

kinds of windfall provide revenues that exceed the threshold level that a corrupt politician would

credibly spend on public goods. There exists a point at which the politician prefers to obtain rents

directly by stealing revenues, rather than obtain them indirectly by spending those revenues and

receiving bribes in exchange for them.

That the politician can keep public-good spending unchanged even as revenues increase implies

that she can do so while remaining in office. I demonstrate that such a rent-seeking equilibrium

is sustained when the politician can use the rents for political advantage. As a specific example, I

consider the case when candidates in elections use both bribe-rents and/or stolen revenues to buy

votes and influence electoral outcomes.
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Appendices

A Ambiguous effect of revenues on social welfare

The following proves that the total social welfare losses may increase or decrease with revenues.

Let T denote the required threshold amount of spending, such that if actual revenues were below

this, then no theft is possible. If actual revenues, T , were above the threshold, the agent obtains

rents from bribes and stolen revenues, with the amount of bribes limited to the level associated with

threshold spending T , and the amount of stolen revenues equal to T − T (i.e. all revenues above

the threshold are stolen).
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Now consider two levels of actual revenues, T1 and T2, with T1 < T < T2. If the social welfare

loss at T2 - denote as W2, is greater (less) than that at T1 - denote as W1, then social welfare loss

increases (decreases) with actual revenues. However, I now show that W2 ≷ W1, in which case the

social welfare loss may increase or decrease with revenues.

Since T2 > T , the total social welfare loss at T2 is W2 = (T2 − T ) + bT , where the first term is

the amount of stolen revenues, while the second term is the amount of bribes associated with T .

Since T1 < T , the social welfare loss at T1 is W1 = b1, where b1 is the amount of bribes associated

with T1.

Now, W2 ≷ W1 if (T2−T )+bT ≷ b1, or (bT−b1) ≷ (T2−T ). The RHS is positive, but the LHS is

not always negative, which means that the social welfare loss at a relatively higher level of revenues,

i.e. W2, is not always higher than the loss at a lower level of revenues, i.e. W1. More precisely, using

equation (6): (bT − b1) = λ
1−λ

[
2(V (T

2
)− V (T1

2
)) + (V (gT1

1 )− V (gT1 )) + (V (T − gT1
1 )− V (T − gT1 ))

]
≷

(T2 − T ).

B FOCs for gk
∗

1

To get equation (28), differentiate (27) with respect to gA
∗

1 and set to zero to get FOC:

N1

[ ∂F
∂∆6T

∂∆6T

∂gA
∗

1

V (gA
∗

1 ) + F (∆6T )V ′(gA
∗

1 )
]
−N1

∂F

∂∆6T
∂∆6T

∂gA
∗

1

V (gB
∗

1 )

+
[ µf

(1− µ)e

][N1

N
V ′(gA

∗

1 )− N2

N
V ′(T − gA∗1 )

]
= 0.

(50)

Letting gk
∗

2 = T − gk∗1 in (24), one can get

∂∆6T

∂gA
∗

1

= µf
[N1

N
V ′(gA

∗

1 )− N2

N
V ′(T − gA∗1 )

]
. (51)

One can then write (50) as

N1F (∆6T )V ′(gA
∗

1 ) =
∂∆6T

∂gA
∗

1

[
N1

∂F

∂∆6T
[V (gB

∗

1 )− V (gA
∗

1 )]− 1

(1− µ)e

]
. (52)

Defining x ≡ N1F (∆ 6T )

N1
∂F

∂∆ 6T
[V (gB

∗
1 )−V (gA

∗
1 )]−[ 1

(1−µ)e
]
, (52) becomes

x =
∂∆6T

∂gA
∗

1

1

V ′(gA
∗

1 )
. (53)

Finally, writing out ∂∆ 6T

∂gA
∗

1

in (53) using (51) and re-arranging give FOC (28).

FOC (29) can be similarly obtained. Differentiating (27) with respect to gB
∗

1 and setting to zero

give
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N1
∂F

∂∆6T
∂∆6T

∂gB
∗

1

V (gA
∗

1 ) +N1V
′(gB

∗

1 )−N1

[ ∂F
∂∆6T

∂∆6T

∂gB
∗

1

V (gB
∗

1 ) + F (∆6T )V ′(gB
∗

1 )
]

+
[ µf

(1− µ)e

][N1

N
V ′(gB

∗

1 )− N2

N
V ′(T − gB∗1 )

]
= 0.

(54)

With
∂∆6T

∂gB
∗

1

= −µf
[N1

N
V ′(gB

∗

1 )− N2

N
V ′(T − gB∗1 )

]
, (55)

one can write (54) as

N1(1− F (∆6T ))V ′(gB
∗

1 ) =
∂∆6T

∂gB
∗

1

[
N1

∂F

∂∆6T
[V (gB

∗

1 )− V (gA
∗

1 )] +
1

(1− µ)e

]
. (56)

Defining y ≡ N1(1−F (∆ 6T ))

N1
∂F

∂∆6T
[V (gB

∗
1 )−V (gA

∗
1 )]+[ 1

(1−µ)e
]
, (56) becomes

y =
∂∆6T

∂gB
∗

1

1

V ′(gB
∗

1 )
. (57)

Finally, writing out ∂∆ 6T

∂gB
∗

1

and re-arranging give FOC (29).

C Kuhn-Tucker conditions for gk
∗
i

To get (41), get the derivative of the Lagrangian with respect to gA1 and set to zero:

N1

[∂F
∂∆

∂∆

∂gA
∗

1

V (gA
∗

1 ) + F (∆)V ′(gA
∗

1 )
]
−N1

∂F

∂∆

∂∆

∂gA
∗

1

V (gB
∗

1 ) +
µf

(1− µ)e

N1

N
V ′(gA

∗

1 )− λA∗ = 0. (58)

Using the fact that
∂∆

∂gA
∗

1

= µf
N1

N
V ′(gA

∗

1 )− (1− µ)e (59)

and re-arranging give (41).

To get (42), get the derivative of the Lagrangian with respect to gA2 and set to zero:

N1V (gA
∗

1 )
∂F

∂∆

∂∆

∂gA
∗

2

−N1V (gB
∗

1 )
∂F

∂∆

∂∆

∂gA
∗

2

+
µf

(1− µ)e

N2

N
V ′(gA

∗

2 )− λA∗ = 0 (60)

which, with
∂∆

∂gA
∗

2

= µf
N2

N
V ′(gA

∗

2 )− (1− µ)e, (61)

gives (42).
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To get (43), get the derivative of the Lagrangian with respect to gB1 and set to zero:

N1
∂F

∂∆

∂∆

∂gB
∗

1

V (gA
∗

1 )+N1V
′(gB

∗

1 )−N1

[∂F
∂∆

∂∆

∂gB
∗

1

V (gB
∗

1 )+F (∆)V ′(gB
∗

1 )
]
+

µf

(1− µ)e

N1

N
V ′(gB

∗

1 )−λB∗ = 0

(62)

which, with
∂∆

∂gB
∗

1

= −µf N1

N
V ′(gB

∗

1 ) + (1− µ)e, (63)

gives (43).

To get (44), get the derivative of the Lagrangian with respect to gB2 and set to zero:

N1
∂F

∂∆

∂∆

∂gB
∗

2

V (gA
∗

1 )−N1
∂F

∂∆

∂∆

∂gB
∗

2

V (gB
∗

1 ) +
µf

(1− µ)e

N2

N
V ′(gB

∗

2 )− λB∗ = 0 (64)

which, with
∂∆

∂gB
∗

2

= −µf N2

N
V ′(gB

∗

2 ) + (1− µ)e, (65)

gives (44).

Lastly, (45) and (46) are standard complementary-slackness conditions.

D Proofs

Proposition 1

Proof. By the implicit function theorem,
dg∗1
dT

= − ∂F/∂T
∂F/∂g∗1

=
λV ′′(T−g∗1)

V ′′(g∗1)+λV ′′(T−g∗1)
> 0. Since g∗1 + g∗2 = T ,

then
dg∗1
dT

+
dg∗2
dT

= 1, which implies that
dg∗2
dT

=
V ′′(g∗1)

V ′′(g∗1)+λV ′′(T−g∗1)
> 0. Thus, (a), (b), and (c) are

obtained by comparing
λV ′′(T−g∗1)

V ′′(g∗1)+λV ′′(T−g∗1)
with

λV ′′(g∗1)

V ′′(g∗1)+λV ′′(T−g∗1)
or, simplifying, λ with

V ′′(g∗1)

V ′(T−g∗1)
. �

Remark Note that the second-order condition (SOC) for a maximum is V ′′(g∗1)+λV ′′(T −g∗1) < 0,

which is met since V ′′(·) < 0. The SOC does not restrict the relative magnitudes of V ′′(g∗1) and

V ′′(T − g∗1), as it only implies that λ >
V ′′(g∗1)

−V ′′(T−g∗1)
, which always holds, i.e. in both cases (a) and

(b).

One can also show that
dg∗1
dT
≷ dg∗2

dT
by demonstrating that

dg∗1
dT
≷ 1

2
. Since g∗1 + g∗2 = T , one can

write g∗1 = αT and g2 = (1 − α)T . With g∗1 > g∗2, it must be that α ∈ (1
2
, 1). Thus, if α is a

constant,
dg∗1
dT

= α > 1
2
. However, more generally, g∗1 = α(λ, T )T , with α(λ, T ) > 1

2
, in which case

dg∗1
dT

= ∂α(λ,T )
∂T

T + α(λ, T ). Thus,
dg∗1
dT
≷ 1

2
, since 1

2
< α(λ, T ) ≶ 1

2
− ∂α(λ,T )

∂T
if ∂α(λ,T )

∂T
6= 0.

A special case of g∗1 = α(λ, T )T is g∗1 = f(λ)T n, where f(λ) > 0, and either n ∈ (0, 1) or n > 1.

In this case,
dg∗1
dT

= f(λ)(nT n−1) ≷ 1
2
.24 For an example in which n ∈ (0, 1), suppose g∗1 =

√
T

1+λ
, which

24Note that n is non-negative since if n < 0, then g∗1 = f(λ) 1
Tn , which implies

dg∗1
dT = f(λ)

(
−nTn−1

T 2n

)
< 0. This is

not possible, as (the proof of) Proposition 1 has shown that
dg∗1
dT > 0.
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implies g∗2 = (1+λ)T−
√
T

1+λ
. Then

dg∗1
dT

= 1
2(1+λ)

√
T
≷ 1

2
, since 1√

T
≷ 1 + λ. An example in which n > 1

is g∗1 = T 2

1+λ
, which implies g∗2 = (1+λ)T−T 2

1+λ
, and where T ∈ (0, (1 + λ)). In this case,

dg∗1
dT

= 2T
1+λ
≷ 1

2
,

since T ≷ 1+λ
4

. �

Proposition 2

Proof. Differentiating (6) with respect to T gives ∂b∗

∂T
= λ

1−λ

[
V ′(T

2
)−V ′(g∗1)

dg∗1
dT
−V ′(T−g∗1)

(
1− dg∗1

dT

)]
,

which is greater than zero if V ′(T
2
) > V ′(g∗1)

dg∗1
dT

+ V ′(T − g∗1)
(
1 − dg∗1

dT

)
or, rearranging,

dg∗1
dT

<
V ′(T

2
)−V ′(T−g∗1)

V ′(g∗1)−V ′(T−g∗1)
. Items (b) and (c) directly follow. �

Proposition 3

Proof. I apply the implicit function theorem to the system of equations (9), (10), (11). Focusing

on interior solutions, necessary for g∗1, g
∗
2, γ

∗ to exist is that the inverse of

A =

 V ′′(g∗1) λ
1−λV

′′(g∗2) −1

0 λ
1−λV

′′(g∗2) −1

γ∗ γ∗ g∗1 + g∗2 − T

 (66)

exists or, equivalently, that the determinant ofA is non-zero. Note that detA = V ′′(g∗1)[ λ
1−λV

′′(g∗1)(g∗1+

g∗2 − T ) + γ∗]. If theft occurs in equilibrium, then g∗1 + g∗2 − T < 0, which implies (from equation

(11)) that γ∗ = 0. Imposing γ∗ = 0, detA = V ′′(g∗1)[ λ
1−λV

′′(g∗2)(g∗1 + g∗2 − T )], which is less than

zero, unless g∗1 = 0 or g∗2 = 0 in which case detA = 0. Thus, if sufficiency conditions are met such

that g∗1, g
∗
2, γ

∗ exist, it must be that when theft occurs such that γ∗ = 0, some revenues are allocated

to both principals, i.e. g∗1, g
∗
2 > 0. �

Proposition 4

Proof. Applying Cramer’s rule,

dg∗1
dT

= − 1
detA

det

 V ′(g∗1)
dg∗1
dT

1
1−λ −

dγ∗

dT
0 −1

V ′(g∗2)
dg∗2
dT

1
1−λ −

dγ∗

dT
λ

1−λV
′′(g∗2) −1

(g∗1 + g∗2 − T )dγ
∗

dT
− γ∗ γ∗ g∗1 + g∗2 − T

. Now if theft occurs in equi-

librium, g∗1 + g∗2 < T , which by equation (11) implies γ∗ = 0 and, hence, dγ∗

dT
. Imposing γ∗ = 0 and

dγ∗

dT
gives

dg∗1
dT

= − 1
detA

[(g∗1 + g∗2 − T )V ′(g∗1)
dg∗1
dT

1
1−λV

′′(g∗2)] or, simplifying,
dg∗1
dT

= 0. Analogously,

dg∗2
dT

= − 1
detA

det

 V ′′(g∗1) 1
1−λ V ′(g∗1)

dg∗1
dT

1
1−λ −

dγ∗

dT
−1

0 V ′(g∗2)
dg∗2
dT

1
1−λ −

dγ∗

dT
−1

γ∗ (g∗1 + g∗2 − T )dγ
∗

dT
− γ∗ g∗1 + g∗2 − T

.

Imposing γ∗ = 0 and dγ∗

dT
= 0 gives

dg∗2
dT

= − 1
detA

[(g∗1 + g∗2 − T )V ′(g∗2)
dg∗2
dT

1
1−λV

′′(g∗1)] or, simplifying,
dg∗2
dT

= 0. �
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Lemma 1

I first show that g0
1, g

0
2 > 0 by applying the implicit function theorem to the system of equations

(13), (14) and (15). That is, it is necessary that detB =

 λV ′′(g0
1) 0 −1

0 λV ′′(g0
2) −1

γ0 γ0 g0
1 + g0

2 − T

 is

non-zero. Imposing γ0, dγ
0

dT
= 0 and evaluating, detB = (g0

1 + g0
2 − T )λV ′′(g0

1)λV ′′(g0
2) which is less

than zero, unless g0
1 = 0 or g0

2 = 0. That is, assuming sufficiency conditions are met such that

g0
1, g

0
2, γ

0 exist, some spending is still allocated, i.e. g0
1, g

0
2 > 0 even when theft occurs (i.e. γ0 = 0).

To prove Lemma 1:

Proof. The proof is similar to the proof of Proposition 2.4. Applying Cramer’s rule,

dg0
1

dT
= − 1

detB
det

 λV ′′(g0
1)
dg0

1

dT
0 −1

λV ′′(g0
2)
dg0

2

dT
λV ′′(g∗2) −1

0 0 g0
1 + g0

2 − T

. Now if theft occurs in equilibrium,

g0
1 + g0

2 < T , which by equation (16) implies γ0 = 0 and, hence, dγ0

dT
. Imposing γ0 = 0 and

dγ0

dT
= 0 gives

dg0
1

dT
= − 1

detB
[(g0

1 + g0
2 − T )λV ′′(g0

1)
dg0

1

dT
λV ′′(g0

2) or, simplifying,
dg0

1

dT
= 0. Analogously,

dg0
2

dT
= − 1

detB
det

 λV ′′(g0
1) λV ′′(g0

1)
dg0

1

dT
−1

0 λV ′′(g0
2)
dg0

2

dT
−1

0 0 g0
1 + g0

2 − T

. Imposing γ0 = 0 and dγ0

dT
= 0 gives

dg0
2

dT
= − 1

detB
[(g0

1 + g0
2 − T )λV ′′(g0

1)λV ′′(g0
2)
dg0

2

dT
] or, simplifying,

dg0
2

dT
= 0. �

Proposition 5

Proof. Differentiating (16) with respect to T gives ∂b∗

∂T
= λ

1−λ [V ′(g0
1)
dg0

1

dT
+ V ′(g0

2)
dg0

2

dT
− V ′(g∗1)

dg∗1
dT
−

V ′(g∗2)
dg∗2
dT

] − dg0
1

dT
− dg0

2

dT
+

dg∗1
dT

+
dg∗2
dT

. By Lemma 1,
dg0

1

dT
,
dg0

2

dT
= 0, and by Proposition 4,

dg∗1
dT
,
dg∗2
dT

= 0.

Thus, ∂b∗

∂T
= 0. �

Corollary 1

Proof. If theft occurs in equilibrium, then R∗ = T − g∗1 − g∗2 + b∗. Differentiating with respect to T

gives ∂R∗

∂T
= 1− dg∗1

dT
− dg∗2

dT
+ ∂b∗

∂T
, which is equal to 1 by Propositions 4 and 5. �

Proposition 6

Proof. From corollary 1, ∂R∗

∂T
= 1. Note that R 6T is simply the amount of bribes when no theft is

possible, and is thus given by equation (6). Thus, ∂R 6T

∂T
is equal to the expression for ∂b∗

∂T
given in

the proof of Proposition 2. Comparing such expression with 1 leads to items (a), (b), and (c). �
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Proposition 7

Proof. Note that if αk
∗
> 0, then gk

∗
1 < T . For αA

∗
> 0, it must be that µf N1

N
− x > 0, and for

αB
∗
> 0, it must be that µf N1

N
+ y > 0. One can write (28) as (i) µf N2

N
= (µf N1

N
− x)

V ′(gA∗1 )

V ′(T−gA∗1 )
,

and (29) as (ii) µf N2

N
= (µf N1

N
+ y)

V ′(gB∗1 )

V ′(T−gB∗1 )
. Equating (i) and (ii) and re-arranging give

µf
N1
N
−x

µf
N1
N

+y
=

V ′(T−gA∗1 )

V ′(gA∗1 )

V ′(gB∗1 )

V ′(T−gB∗1 )
. Since the RHS is non-negative, and µf N1

N
6= x, µf N1

N
6= −y, then µf N1

N
− x > 0

and µf N1

N
+ y > 0. �

Proposition 8

Proof. Note that gA∗1 ≷ gB∗1 if αA
∗
≶ αB

∗
, and vice-versa. In turn, αA

∗
=

µf
N2
N

µf
N1
N
−x
≶

µf
N2
N

µf
N1
N

+y
= αB

∗
if

y ≶ −x. Writing out the expressions for y and x, this condition becomes
N1

∂F

∂∆ 6T
[V (gB

∗
1 )−V (gA

∗
1 )]−[ 1

(1−µ)e
]

N1
∂F

∂∆ 6T
[V (gB

∗
1 )−V (gA

∗
1 )]+[ 1

(1−µ)e
]
≶

−F (∆ 6T )
1−F (∆ 6T )

. To simplify, let a ≡ N1
∂F
∂∆ 6T

[V (gB
∗

1 ) − V (gA
∗

1 )] and b ≡ 1
(1−µ)e

. Then the condition can be

written as a−b
a+b
≶ −F (∆ 6T )

1−F (∆ 6T )
, which simplifies to F (∆6T ) ≶ 1

2
− a

2b
, the RHS of which has been defined

as z. (Result (iii) corresponds to F (∆6T ) = 1
2
− a

2b
). �

Lemma 2

Proof. Writing out the expression for αA
∗

and comparing with N2

N1
give: αA

∗
=

µf
N2
N

µf
N1
N
−x
≷ N2

N1
or,

simplifying, x ≷ 0. (It follows that x = 0 ⇐⇒ αA
∗

= N2

N1
.) Similarly, αB

∗
=

µf
N2
N

µf
N1
N

+y
≷ N2

N1
or,

simplifying, y ≶ 0. (It follows that if y = 0⇐⇒ αB
∗

= N2

N1
.) �

Lemma 3

Proof. Note first that the numerators from the expressions for x and y are non-zero and positive

since F (∆6T ) ∈ (0, 1). Thus, whether x, y ≷ 0 depend on their respective denominators. For x ≷ 0,

it must be that V (gB
∗

1 ) − V (gA
∗

1 ) ≷ 1
(1−µ)eN1

∂F

∂∆6T
≡ w, where the RHS is greater than zero. Thus,

when gB
∗

1 ≤ gA
∗

1 , the LHS is less than or equal to zero, which implies x < 0. If gB
∗

1 > gA
∗

1 , then

the LHS is greater than zero. In this case, one compares V (gB
∗

1 ) − V (gA
∗

1 ) with w. An analogous

argument can be made to establish whether y ≷ 0, which now requires V (gA
∗

1 )−V (gB
∗

1 ) ≶ w. (Note

that in this case, the LHS is less than or equal to zero when gB
∗

1 ≥ gA
∗

1 , which implies y > 0.) �

Proposition 9

Proof. To prove (i), note that Proposition 8 establishes that gA
∗

1 = gB
∗

1 ⇐⇒ F (∆6T ) = z. From

Lemma 3, x < 0 and y > 0 ⇐⇒ gA
∗

1 = gB
∗

1 . Finally, from Lemma 2, αA
∗
< N2

N1
⇐⇒ x < 0 and
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αB
∗
< N2

N1
⇐⇒ y > 0. Thus, both A and B attach higher weight to group 1’s, than to group 2’s

utility, relative to N2

N1
, which is the weight implies by the social optimum. Hence, gA

∗
1 = gB

∗
1 > g0

1.

Results (ii) and (iii) are analogously obtained using Proposition 8, and Lemmas 2 and 3. �

Proposition 10

Proof. One can subtract V (g0
1) from both sides of the FOC for gk

∗
1 to get (i) V (gk

∗
1 ) − V (g0

1) =

αk
∗
V (T −gk∗1 )−V (g0

1). Then, using the FOC for g0
1, one can plug into the RHS of (ii) an expression

for V (g0
1): (ii) V (gk

∗
1 ) − V (g0

1) = αk
∗
V (T − gk∗1 ) − N2

N1
V (T − g0

1). Finally, substituting the RHS of

(ii) into the LHS of the condition for bk
∗ ≥ 0 gives αk

∗
V (T − gk∗1 )− N2

N1
V (T − g0

1) ≤ N2

N1
[V (T − gk0

1 )−
V (T − gk∗1 )], which reduces to

V (T−g0
1)

V (T−gk∗1 )
≥ αk

∗
N1+N2

2N2
. �

Proposition 11

Proof. From equation (33), bA
∗
≷ bB

∗
if V (gB

∗
1 )−V (gA

∗
1 ) ≷ (1−µ)e

µf
N2

N1
[V (T −gA∗1 )−V (T −gB∗1 )]. The

LHS of the inequality is ≶ 0, while the RHS is ≷ 0, when gA
∗

1 ≷ gB
∗

1 . Thus, bA
∗
≶ bB

∗
if gA

∗
1 ≷ gB

∗
1 .

(Both the LHS and RHS are equal to zero when gA
∗

1 = gB
∗

1 , which implies bA
∗

= bB
∗
.) The reverse

holds – if gA
∗

1 ≷ gB
∗

1 , then V (gB
∗

1 ) − V (gA
∗

1 ) ≶ (1−µ)e
µf

N2

N1
[V (T − gA∗1 ) − V (T − gB∗1 )], which means

bA
∗
≶ bB

∗
. �

Proposition 12

Proof. By assumption, V ′(gk
∗
i ) ≥ 0, while equations (i) and (ii) underlying (47) require that

V ′(gk
∗
i ) 6= 0. Thus, it must be that V ′(gk

∗
i ) > 0, which implies that gk

∗
i > 0. �

Lemma 4

Proof. By proposition 12, the LHS of (47) is greater than zero. For the RHS to be greater than

zero,
∂gk
∗

2

∂gk
∗

1

6= |1| and
∂gA

∗
2

∂gA
∗

1

≷ 1⇐⇒ ∂gB
∗

2

∂gB
∗

1

≶ 1. �

Proposition 13

Proof. Note that gA
∗

1 ≷ gB
∗

1 ⇐⇒ V ′(gA
∗

1 ) ≷ V ′(gB
∗

1 ), and gA
∗

1 = gB
∗

1 ⇐⇒ V ′(gA
∗

1 ) = V ′(gB
∗

1 ). By

(47), V ′(gA
∗

1 ) ≷ V ′(gB
∗

1 ) ⇐⇒ (1 − F (∆))(
∂gA

∗
2

∂gA
∗

1

− 1) ≷ F (∆)(1 − ∂gB
∗

2

∂gB
∗

1

) or, re-arranging: F (∆) ≶

(
∂gA

∗
2

∂gA
∗

1

− 1)(
∂gA

∗
2

∂gA
∗

1

− ∂gB
∗

2

∂gB
∗

1

) ≡ w, while V ′(gA
∗

1 ) = V ′(gB
∗

1 )⇐⇒ F (∆) = w. �
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Proposition 14

Proof. The socially optimal allocation, i.e. when there is no theft or bribery such that Uk =

µf [N1

N
V (gk1) + N2

N
V (T − gk1)] is maximized, satisfies

V ′(g0
1)

V ′(T−g0
1)

= N2

N1
. Now the allocation of each can-

didate is such that
V ′(gk1 )

V ′(gk2 )
≷ V ′(g0

1)

V ′(T−g0
1)

. To see this, recall that
∂gA

∗
2

∂gA
∗

1

= ∂∆
∂gA

∗
1

∂gA
∗

2

∂∆
=

µf
N1
N
V ′(gA

∗
1 )−(1−µ)e

µf
N2
N
V ′(gA

∗
2 )−(1−µ)e

.

By Lemma 4, µf N1

N
V ′(gA

∗
1 ) − (1 − µ)e ≷ µf N2

N
V ′(gA

∗
2 ) − (1 − µ)e or, simplifying,

V ′(gA1 )

V ′(gA2 )
≷ N2

N1
.

Similarly,
∂gB

∗
2

∂gB
∗

1

= ∂∆
∂gB

∗
1

∂gB
∗

2

∂∆
=
−µf N1

N
V ′(gB

∗
1 )+(1−µ)e

−µf N2
N
V ′(gB

∗
2 )+(1−µ)e

and, by Lemma 4, −µf N1

N
V ′(gB

∗
1 ) + (1 − µ)e ≶

−µf N2

N
V ′(gB

∗
2 ) + (1− µ)e or

V ′(gB1 )

V ′(T−gB1 )
≷ N2

N1
. Substituting in for N2

N1
, we have that

V ′(gk1 )

V ′(gk2 )
≷ V ′(g0

1)

V ′(T−g0
1)

for each k = {A,B}. �

Proposition 15

Proof. For
V ′(gk

0

1 )

V ′(gk
0

2 )
= N2

N1
to hold for each candidate A and B, it must be that gA

0

1 = gB
0

1 ⇐⇒ gA
0

2 =

gB
0

2 . In this case, (49) reduces to
[

1
(1−µ)e

][
µf [N1

N
(V (gB

∗
1 )−V (gA

∗
1 ))+ N2

N
(V (gB

∗
2 )−V (gA

∗
2 ))]

]
+gA

∗
1 +

gA
∗

2 − (gB
∗

1 + gB
∗

2 ). Thus, bA
∗

T ≷ bB
∗

T if
[

1
(1−µ)e

][
µf [N1

N
(V (gB

∗
1 )− V (gA

∗
1 )) + N2

N
(V (gB

∗
2 )− V (gA

∗
2 ))]

]
+

gA
∗

1 + gA
∗

2 − (gB
∗

1 + gB
∗

2 ) ≷ 0 or, re-arranging: [(gB
∗

1 + gB
∗

2 ) − (gA
∗

1 + gA
∗

2 )] ≶ [ µf
(1−µ)e

][N1

N
V (gB

∗
1 ) +

N2

N
V (gB

∗
2 )]− [N1

N
v(gA

∗
1 ) + N2

N
V (gA

∗
2 )], or x ≶ [ µf

(1−µ)e
]y. (Result (iii) immediately follows.) �

46


